In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem ar...In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.展开更多
The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely met...The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely metrically compactly open values were established in H-metric spaces. These theorems generalize recent results of Khamsi and Yuan. As applications, some Ky Fan type matching theorems for finitely metrically compactly open covers and finitely metrically compactly closed covers, fixed point theorems and minimax inequality are obtained in H-metric spaces. These results generalize a number of known results in recent literature.展开更多
基金Supported by the Scientific Research Foundation of Bijie University(20072001)
文摘In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.
文摘The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely metrically compactly open values were established in H-metric spaces. These theorems generalize recent results of Khamsi and Yuan. As applications, some Ky Fan type matching theorems for finitely metrically compactly open covers and finitely metrically compactly closed covers, fixed point theorems and minimax inequality are obtained in H-metric spaces. These results generalize a number of known results in recent literature.