The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions o...The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions or assumptions.First,we give two preconditions of applying Grover’s algorithm,which ensure that the success probability of finding the marked element is close to 1.Then,based on these two preconditions,it is found out that the success probability of the quantum algorithm for FXconstruction is far less than 1.Furthermore,we give the design method of the Oracle function,and then present the general method of combining Grover and Simon algorithm for attacking block ciphers,with success probability close to 1.展开更多
The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanal...The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanalysis attack after 5 rounds while IDEA(8) needs 7 rounds for the same level of security. The transition matrix for IDEA(16) and its eigenvalue of second largest magnitude are computed. The storage method for the transition matrix has been optimized to speed up file I/O. The emphasis of the work lies in finding out an effective way of computing the eigenvalue of the matrix. To lower time complexity, three mature algorithms in finding eigenvalues are compared from one another and subspace iteration algorithm is employed to compute the eigenvalue of second largest module, with a precision of 0.001.展开更多
This article explains the imbalance in DES and introduces the operators in IDEA. At last it puts forward a Unsym-metrical Block Encryption Algorithm which is achieved by adding some operators to DES.
With the new era of the Internet of Things(IoT)technology,many devices with limited resources are utilized.Those devices are susceptible to a signicant number of new malware and other risks emerging rapidly.One of the...With the new era of the Internet of Things(IoT)technology,many devices with limited resources are utilized.Those devices are susceptible to a signicant number of new malware and other risks emerging rapidly.One of the most appropriate methods for securing those IoT applications is cryptographic algorithms,as cryptography masks information by eliminating the risk of collecting any meaningful information patterns.This ensures that all data communications are private,accurate,authenticated,authorized,or nonrepudiated.Since conventional cryptographic algorithms have been developed specically for devices with limited resources;however,it turns out that such algorithms are not ideal for IoT restricted devices with their current conguration.Therefore,lightweight block ciphers are gaining popularity to meet the requirements of low-power and constrained devices.A new ultra-lightweight secret-key block-enciphering algorithm named“LBC-IoT”is proposed in this paper.The proposed block length is 32-bit supporting key lengths of 80-bit,and it is mainly based on the Feistel structure.Energy-efcient cryptographic features in“LBC-IoT”include the use of simple functions(shift,XOR)and small rigid substitution boxes(4-bit-S-boxes).Besides,it is immune to different types of attacks such as linear,differential,and side-channel as well as exible in terms of implementation.Moreover,LBC-IoT achieves reasonable performance in both hardware and software compared to other recent algorithms.LBC-IoT’s hardware implementation results are very promising(smallest ever area“548”GE)and competitive with today’s leading lightweight ciphers.LBC-IoT is also ideally suited for ultra-restricted devices such as RFID tags.展开更多
There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution o...There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.展开更多
Wireless Multimedia Sensor Network (WMSN) is an advancement of Wireless Sensor Network (WSN) that encapsulates WSN with multimedia information like image and video. The primary factors considered in the design and dep...Wireless Multimedia Sensor Network (WMSN) is an advancement of Wireless Sensor Network (WSN) that encapsulates WSN with multimedia information like image and video. The primary factors considered in the design and deployment of WSN are low power consumption, high speed and memory requirements. Security is indeed a major concern, in any communication system. Consequently, design of compact and high speed WMSN with cryptography algorithm for security, without compromising on sensor node performance is a challenge and this paper proposes a new lightweight symmetric key encryption algorithm based on 1 D cellular automata theory. Simulations are performed using MatLab and synthesized using Xilinx ISE. The proposed approach supports both software and hardware implementation and provides better performance compared to other existing algorithms in terms of number of slices, throughput and other hardware utilization.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61502526)。
文摘The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions or assumptions.First,we give two preconditions of applying Grover’s algorithm,which ensure that the success probability of finding the marked element is close to 1.Then,based on these two preconditions,it is found out that the success probability of the quantum algorithm for FXconstruction is far less than 1.Furthermore,we give the design method of the Oracle function,and then present the general method of combining Grover and Simon algorithm for attacking block ciphers,with success probability close to 1.
基金Supported by the National Natural Science Foundation of China (60573032, 90604036)Participation in Research Project of Shanghai Jiao Tong University
文摘The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanalysis attack after 5 rounds while IDEA(8) needs 7 rounds for the same level of security. The transition matrix for IDEA(16) and its eigenvalue of second largest magnitude are computed. The storage method for the transition matrix has been optimized to speed up file I/O. The emphasis of the work lies in finding out an effective way of computing the eigenvalue of the matrix. To lower time complexity, three mature algorithms in finding eigenvalues are compared from one another and subspace iteration algorithm is employed to compute the eigenvalue of second largest module, with a precision of 0.001.
文摘This article explains the imbalance in DES and introduces the operators in IDEA. At last it puts forward a Unsym-metrical Block Encryption Algorithm which is achieved by adding some operators to DES.
基金funded by Scientic Research Deanship at University of Ha’il—Saudi Arabia through Project Number RG-20019。
文摘With the new era of the Internet of Things(IoT)technology,many devices with limited resources are utilized.Those devices are susceptible to a signicant number of new malware and other risks emerging rapidly.One of the most appropriate methods for securing those IoT applications is cryptographic algorithms,as cryptography masks information by eliminating the risk of collecting any meaningful information patterns.This ensures that all data communications are private,accurate,authenticated,authorized,or nonrepudiated.Since conventional cryptographic algorithms have been developed specically for devices with limited resources;however,it turns out that such algorithms are not ideal for IoT restricted devices with their current conguration.Therefore,lightweight block ciphers are gaining popularity to meet the requirements of low-power and constrained devices.A new ultra-lightweight secret-key block-enciphering algorithm named“LBC-IoT”is proposed in this paper.The proposed block length is 32-bit supporting key lengths of 80-bit,and it is mainly based on the Feistel structure.Energy-efcient cryptographic features in“LBC-IoT”include the use of simple functions(shift,XOR)and small rigid substitution boxes(4-bit-S-boxes).Besides,it is immune to different types of attacks such as linear,differential,and side-channel as well as exible in terms of implementation.Moreover,LBC-IoT achieves reasonable performance in both hardware and software compared to other recent algorithms.LBC-IoT’s hardware implementation results are very promising(smallest ever area“548”GE)and competitive with today’s leading lightweight ciphers.LBC-IoT is also ideally suited for ultra-restricted devices such as RFID tags.
基金supported in part by National Natural Science Fundation of China under Grant No.61202458,61403109
文摘There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.
文摘Wireless Multimedia Sensor Network (WMSN) is an advancement of Wireless Sensor Network (WSN) that encapsulates WSN with multimedia information like image and video. The primary factors considered in the design and deployment of WSN are low power consumption, high speed and memory requirements. Security is indeed a major concern, in any communication system. Consequently, design of compact and high speed WMSN with cryptography algorithm for security, without compromising on sensor node performance is a challenge and this paper proposes a new lightweight symmetric key encryption algorithm based on 1 D cellular automata theory. Simulations are performed using MatLab and synthesized using Xilinx ISE. The proposed approach supports both software and hardware implementation and provides better performance compared to other existing algorithms in terms of number of slices, throughput and other hardware utilization.