This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi...This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun...For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow t...In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.展开更多
In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction...In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction method is used to obtain exact solutions for several MHD flows with nonlinear variable Mach number. For resistive flows parallel to a magnetic field, the governing equilibrium equation is derived. The MHD equilibrium state of a helically symmetric incompressible flow is governed by a second-order elliptic partial differential equation(PDE) for the helical magnetic flux function. Exact solutions for the latter equation are obtained. Also, the equilibrium equations of a gravitating plasma with incompressible flow are derived.展开更多
In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the mode...In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.展开更多
In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the cont...In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.展开更多
The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic ...The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.展开更多
The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using th...The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using the same methods as compressible ones.The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations.Any numerical method highly depends on its accuracy and speed of convergence.Although the artificial compressibility approach is utilized in several numerical simulations,the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies.Therefore,this paper assesses the effect of this factor on the convergence speed and accuracy of results for various types of thermo-flow.To improve the stability and convergence speed of time discretizations,the fifth-order Runge-Kutta method is applied.A computer program has been written in FORTRAN to solve the discretized equations in different Reynolds and Grashof numbers for various grids.The results demonstrate that the artificial compressibility factor has a noticeable effect on the accuracy and convergence rate of the simulation.The optimum artificial compressibility is found to be between 1 and 5.These findings can be utilized to enhance the performance of commercial numerical simulation tools,including ANSYS and COMSOL.展开更多
In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar...In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0).展开更多
This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit,...This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit, in which the initial data is “well-prepared” and the velocity field enjoys the slip boundary conditions. The main idea is to derive the uniform energy estimates for nonlinear systems and corresponding incompressible limit.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and l...We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.展开更多
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of l...Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.展开更多
The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S...The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S3 - L. We discuss the properties that the surface F intersects with 2-spheres in S3 - L. The intersection forms a topological graph consisting of a collection of circles and saddle-shaped discs. We introduce topological graphs and their moves (R-move and S2-move), and define the characteristic number of the topological graph for F∩S2±. The characteristic number is unchanged under the moves. In fact, the number is exactly the Euler Characteristic number of the surface when a graph satisfies some conditions. By these ways, we characterize the properties of incompressible pairwise incompressible surfaces in alternating (or almost alternating) link complements. We prove that the genus of the surface equals zero if the component number of F∩S2+(or F∩S2-) is less than five and the graph is simple for alternating or almost alternating links. Furthermore, one can prove that the genus of the surface is zero if #(F) ≤8.展开更多
In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin app...In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.展开更多
The radial symmetric motion problem was examined for a spherical shell composed of a class of imperfect incompressible hyper-elastic materials, in which the materials may be viewed as the homogeneous incompressible is...The radial symmetric motion problem was examined for a spherical shell composed of a class of imperfect incompressible hyper-elastic materials, in which the materials may be viewed as the homogeneous incompressible isotropic neo-Hookean material with radial perturbations. A second-order nonlinear ordinary differential equation that describes the radial motion of the inner surface of the shell was obtained. And the first integral of the equation was then carded out. Via analyzing the dynamical properties of the solution of the differential equation, the effects of the prescribed imperfection parameter of the material and the ratio of the inner and the outer radii of the underformed shell on the motion of the inner surface of the shell were discussed, and the corresponding numerical examples were carded out simultaneously. In particular, for some given parameters, it was proved that, there exists a positive critical value, and the motion of the inner surface with respect to time will present a nonlinear periodic oscillation as the difference between the inner and the outer presses does not exceed the critical value. However, as the difference exceeds the critical value, the motion of the inner surface with respect to time will increase infinitely. That is to say, the shell will be destroyed ultimately.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
基金supported in part by the National Natural Science Foundation of China(12101088)the Natural Science Foundation of Sichuan Province(2022NSFSC1858)。
文摘This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
文摘For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.
文摘In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction method is used to obtain exact solutions for several MHD flows with nonlinear variable Mach number. For resistive flows parallel to a magnetic field, the governing equilibrium equation is derived. The MHD equilibrium state of a helically symmetric incompressible flow is governed by a second-order elliptic partial differential equation(PDE) for the helical magnetic flux function. Exact solutions for the latter equation are obtained. Also, the equilibrium equations of a gravitating plasma with incompressible flow are derived.
基金the NSF of Guangxi(2021GXNSFFA196004,GKAD23026237)the NNSF of China(12001478)+4 种基金the China Postdoctoral Science Foundation(2022M721560)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECHthe National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)the Startup Project of Doctor Scientific Research of Yulin Normal University(G2020ZK07)the Ministry of Science and Higher Education of Republic of Poland(4004/GGPJII/H2020/2018/0,440328/Pn H2/2019)。
文摘In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.
文摘In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.
基金supported by the National Natural Science Foundation of China(No.11972144)the Shanxi Province Specialized Research and Development Breakthrough in Key Core and Generic Technologies(Key Research and Development Program)(No.2020XXX017)the Fundamental Research Program of Shanxi Province of China(No.202203021211134)。
文摘The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number RGP.2/235/43.
文摘The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using the same methods as compressible ones.The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations.Any numerical method highly depends on its accuracy and speed of convergence.Although the artificial compressibility approach is utilized in several numerical simulations,the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies.Therefore,this paper assesses the effect of this factor on the convergence speed and accuracy of results for various types of thermo-flow.To improve the stability and convergence speed of time discretizations,the fifth-order Runge-Kutta method is applied.A computer program has been written in FORTRAN to solve the discretized equations in different Reynolds and Grashof numbers for various grids.The results demonstrate that the artificial compressibility factor has a noticeable effect on the accuracy and convergence rate of the simulation.The optimum artificial compressibility is found to be between 1 and 5.These findings can be utilized to enhance the performance of commercial numerical simulation tools,including ANSYS and COMSOL.
基金supported by the NSFC(11871412)the Postgraduate Scientific Research Innovation Project of Xiangtan University(XDCX2020B088)。
文摘In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0).
文摘This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit, in which the initial data is “well-prepared” and the velocity field enjoys the slip boundary conditions. The main idea is to derive the uniform energy estimates for nonlinear systems and corresponding incompressible limit.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
文摘We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
文摘Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.
基金Supported by NSF of China (11071106)supported by Liaoning Educational Committee (2009A418)
文摘The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S3 - L. We discuss the properties that the surface F intersects with 2-spheres in S3 - L. The intersection forms a topological graph consisting of a collection of circles and saddle-shaped discs. We introduce topological graphs and their moves (R-move and S2-move), and define the characteristic number of the topological graph for F∩S2±. The characteristic number is unchanged under the moves. In fact, the number is exactly the Euler Characteristic number of the surface when a graph satisfies some conditions. By these ways, we characterize the properties of incompressible pairwise incompressible surfaces in alternating (or almost alternating) link complements. We prove that the genus of the surface equals zero if the component number of F∩S2+(or F∩S2-) is less than five and the graph is simple for alternating or almost alternating links. Furthermore, one can prove that the genus of the surface is zero if #(F) ≤8.
文摘In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.
基金国家自然科学基金,Municipal Key Subject Program of Shanghai
文摘The radial symmetric motion problem was examined for a spherical shell composed of a class of imperfect incompressible hyper-elastic materials, in which the materials may be viewed as the homogeneous incompressible isotropic neo-Hookean material with radial perturbations. A second-order nonlinear ordinary differential equation that describes the radial motion of the inner surface of the shell was obtained. And the first integral of the equation was then carded out. Via analyzing the dynamical properties of the solution of the differential equation, the effects of the prescribed imperfection parameter of the material and the ratio of the inner and the outer radii of the underformed shell on the motion of the inner surface of the shell were discussed, and the corresponding numerical examples were carded out simultaneously. In particular, for some given parameters, it was proved that, there exists a positive critical value, and the motion of the inner surface with respect to time will present a nonlinear periodic oscillation as the difference between the inner and the outer presses does not exceed the critical value. However, as the difference exceeds the critical value, the motion of the inner surface with respect to time will increase infinitely. That is to say, the shell will be destroyed ultimately.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.