In this study,a batch of indium tin oxide(ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam.The crystalline structure,surface shape,and optical cha...In this study,a batch of indium tin oxide(ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam.The crystalline structure,surface shape,and optical characterization of the films were researched using an X-ray diffractometer,an atomic force microscope,a UV-Vis-NIR dual-beam spectrophotometer,and an open-hole Z-scan system.By varying the relative thickness ratio of the ITO/Sn bilayer film,tunable nonlinear optical properties were achieved.The nonlinear saturation absorption coefficientβmaximum of the ITO/Sn composites is−10.5×10^(−7)cm/W,approximately 21 and 1.72 times more enhanced compared to monolayer ITO and Sn,respectively.Moreover,the improvement of the sample nonlinear performance was verified using finite-difference in temporal domain simulations.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61775141 and 62075133).
文摘In this study,a batch of indium tin oxide(ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam.The crystalline structure,surface shape,and optical characterization of the films were researched using an X-ray diffractometer,an atomic force microscope,a UV-Vis-NIR dual-beam spectrophotometer,and an open-hole Z-scan system.By varying the relative thickness ratio of the ITO/Sn bilayer film,tunable nonlinear optical properties were achieved.The nonlinear saturation absorption coefficientβmaximum of the ITO/Sn composites is−10.5×10^(−7)cm/W,approximately 21 and 1.72 times more enhanced compared to monolayer ITO and Sn,respectively.Moreover,the improvement of the sample nonlinear performance was verified using finite-difference in temporal domain simulations.