In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to...In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to project into the subspaces of P<sub>n</sub>[x] where the function h ∈P<sub>n</sub>[x] represents the closets function to f ∈P<sub>n</sub>[x] in the least square sense. I also demonstrate that we can generalise projections by constructing operators i.e. in R<sup>n+1</sup> using the metric tensor on P<sub>n</sub>[x]. This allows one to project a polynomial function onto another by mapping it to its coefficient vector in R<sup>n+1</sup>. This can be also achieved with the Kronecker Product as detailed in this paper.展开更多
Necessary and sufficient conditions are obtained for operator partial 2×2 matrices to have an idempotent completion, and all such completions are parametrically represented.
In this paper,we discuss the rank-1-preserving linear maps on nest algebras of Hilbert- space operators.We obtain several characterizations of such linear maps and apply them to show that a weakly continuous linear bi...In this paper,we discuss the rank-1-preserving linear maps on nest algebras of Hilbert- space operators.We obtain several characterizations of such linear maps and apply them to show that a weakly continuous linear bijection on an atomic nest algebra is idempotent preserving if and only if it is a Jordan homomorphism,and in turn,if and only if it is an automorphism or an anti-automorphism.展开更多
文摘In this article, I consider projection groups on function spaces, more specifically the space of polynomials P<sub>n</sub>[x]. I will show that a very similar construct of projection operators allows us to project into the subspaces of P<sub>n</sub>[x] where the function h ∈P<sub>n</sub>[x] represents the closets function to f ∈P<sub>n</sub>[x] in the least square sense. I also demonstrate that we can generalise projections by constructing operators i.e. in R<sup>n+1</sup> using the metric tensor on P<sub>n</sub>[x]. This allows one to project a polynomial function onto another by mapping it to its coefficient vector in R<sup>n+1</sup>. This can be also achieved with the Kronecker Product as detailed in this paper.
基金Project supported by National Natural Science Foundation of China Provincial Natural Science Foundation of Shanxi
文摘Necessary and sufficient conditions are obtained for operator partial 2×2 matrices to have an idempotent completion, and all such completions are parametrically represented.
基金supported by NNSFC(10071046)PNSFS(981009)+1 种基金PYSFS(20031009)China Postdoctoral Science Foundation
文摘In this paper,we discuss the rank-1-preserving linear maps on nest algebras of Hilbert- space operators.We obtain several characterizations of such linear maps and apply them to show that a weakly continuous linear bijection on an atomic nest algebra is idempotent preserving if and only if it is a Jordan homomorphism,and in turn,if and only if it is an automorphism or an anti-automorphism.