One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also...With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been conside...The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies.展开更多
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy....Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.展开更多
Edge caching has emerged as a promising application paradigm in 5G networks,and by building edge networks to cache content,it can alleviate the traffic load brought about by the rapid growth of Internet of Things(IoT)...Edge caching has emerged as a promising application paradigm in 5G networks,and by building edge networks to cache content,it can alleviate the traffic load brought about by the rapid growth of Internet of Things(IoT)services and applications.Due to the limitations of Edge Servers(ESs)and a large number of user demands,how to make the decision and utilize the resources of ESs are significant.In this paper,we aim to minimize the total system energy consumption in a heterogeneous network and formulate the content caching optimization problem as a Mixed Integer Non-Linear Programming(MINLP).To address the optimization problem,a Deep Q-Network(DQN)-based method is proposed to improve the overall performance of the system and reduce the backhaul traffic load.In addition,the DQN-based method can effectively solve the limitation of traditional reinforcement learning(RL)in complex scenarios.Simulation results show that the proposed DQN-based method can greatly outperform other benchmark methods,and significantly improve the cache hit rate and reduce the total system energy consumption in different scenarios.展开更多
Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for Io...Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments.展开更多
In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the q...In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the quality of user experience.Considering the difference between global and local video popularities and the time-varying characteristics of video popularity,a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay.Based on both long-term content popularity and short-term content popularity,the proposed caching solution is decouple into the proactive cache stage and the cache update stage.In the proactive cache stage,we develop a proactive cache placement algorithm that can be executed in an off-peak period.In the cache update stage,we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay.Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently.展开更多
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile termin...Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
The upsurge of mobile multimedia traf-fic puts a heavy burden on the cellular network,and wireless caching has emerged as a powerful tech-nique to overcome the backhaul bottleneck and al-leviate the network burden.How...The upsurge of mobile multimedia traf-fic puts a heavy burden on the cellular network,and wireless caching has emerged as a powerful tech-nique to overcome the backhaul bottleneck and al-leviate the network burden.However,most previ-ous works ignored user mobility,thus not reaping the caching gain from user mobility and having lim-ited practical applications.In this paper,a mobility-aware caching strategy for the software-defined net-work(SDN)-based network is studied.Firstly,since typical mobile user(MU)has multiple opportunities to connect with the nearby MUs and Small-base stations(SBSs),the contact times between MUs as well as be-tween MU and SBSs are derived as the Poisson distri-bution and Gamma distribution.Secondly,we propose a two-tier cooperative caching strategy,where SBSs cache the rateless Fountain code encoded video blocks probabilistically and nonrepeatedly while MUs just store the whole encoded video received last time.The corresponding four-stage transmission process is ana-lyzed,where the key intermediate step is the deriva-tion of the service and the failing probabilities of each transmission manner.Finally,we derive the success-ful offloading rate and average data offloading ra-tio(ADOR)as performance metrics.A system op-timization problem based on ADOR is formulated,and two solutions are proposed,namely,derivativebased solution(DB-Solution)and long-tail distribution approximation(LTD-Approximation).Simulation results demonstrate that the effectiveness of LTDApproximation is similar to the DB-Solution,and the proposed caching strategy can achieve quasi-optimal performance compared with other contrast schemes.展开更多
As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file tra...As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file transmission approaches of multi-tier terrestrial networks.In the paper,we introduce edge computing technology into the satellite-terrestrial network and propose a partition-based cache and delivery strategy to make full use of the integrated resources and reducing the backhaul load.Focusing on the interference effect from varied nodes in different geographical distances,we derive the file successful transmission probability of the typical user and by utilizing the tool of stochastic geometry.Considering the constraint of nodes cache space and file sets parameters,we propose a near-optimal partition-based cache and delivery strategy by optimizing the asymptotic successful transmission probability of the typical user.The complex nonlinear programming problem is settled by jointly utilizing standard particle-based swarm optimization(PSO)method and greedy based multiple knapsack choice problem(MKCP)optimization method.Numerical results show that compared with the terrestrial only cache strategy,Ground Popular Strategy,Satellite Popular Strategy,and Independent and identically distributed popularity strategy,the performance of the proposed scheme improve by 30.5%,9.3%,12.5%and 13.7%.展开更多
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq...Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.展开更多
为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性...为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。展开更多
An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been de...An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been designed,including Named Data Networking(NDN),which is designed around content delivery instead of hosts.As data is the central part of the network.Therefore,NDN was developed to get rid of the dependency on IP addresses and provide content effectively.Mobility is one of the major research dimensions for this upcoming internet architecture.Some research has been carried out to solve the mobility issues,but it still has problems like handover delay and packet loss ratio during real-time video streaming in the case of consumer and producer mobility.To solve this issue,an efficient hierarchical Cluster Base Proactive Caching for Device Mobility Management(CB-PC-DMM)in NDN Vehicular Networks(NDN-VN)is proposed,through which the consumer receives the contents proactively after handover during the mobility of the consumer.When a consumer moves to the next destination,a handover interest is sent to the connected router,then the router multicasts the consumer’s desired data packet to the next hop of neighboring routers.Thus,once the handover process is completed,consumers can easily get the content to the newly connected router.A CB-PCDMM in NDN-VN is proposed that improves the packet delivery ratio and reduces the handover delay aswell as cluster overhead.Moreover,the intra and inter-domain handover handling procedures in CB-PC-DMM for NDN-VN have been described.For the validation of our proposed scheme,MATLAB simulations are conducted.The simulation results show that our proposed scheme reduces the handover delay and increases the consumer’s interest satisfaction ratio.The proposed scheme is compared with the existing stateof-the-art schemes,and the total percentage of handover delays is decreased by up to 0.1632%,0.3267%,2.3437%,2.3255%,and 3.7313%at the mobility speeds of 5 m/s,10 m/s,15 m/s,20 m/s,and 25 m/s,and the efficiency of the packet delivery ratio is improved by up to 1.2048%,5.0632%,6.4935%,6.943%,and 8.4507%.Furthermore,the simulation results of our proposed scheme show better efficiency in terms of Packet Delivery Ratio(PDR)from 0.071 to 0.077 and a decrease in the handover delay from 0.1334 to 0.129.展开更多
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c...In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.展开更多
Integrating the blockchain technology into mobile-edge computing(MEC)networks with multiple cooperative MEC servers(MECS)providing a promising solution to improving resource utilization,and helping establish a secure ...Integrating the blockchain technology into mobile-edge computing(MEC)networks with multiple cooperative MEC servers(MECS)providing a promising solution to improving resource utilization,and helping establish a secure reward mechanism that can facilitate load balancing among MECS.In addition,intelligent management of service caching and load balancing can improve the network utility in MEC blockchain networks with multiple types of workloads.In this paper,we investigate a learningbased joint service caching and load balancing policy for optimizing the communication and computation resources allocation,so as to improve the resource utilization of MEC blockchain networks.We formulate the problem as a challenging long-term network revenue maximization Markov decision process(MDP)problem.To address the highly dynamic and high dimension of system states,we design a joint service caching and load balancing algorithm based on the double-dueling Deep Q network(DQN)approach.The simulation results validate the feasibility and superior performance of our proposed algorithm over several baseline schemes.展开更多
针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立...针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。展开更多
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1807700the National Natural Science Foundation of China(NSFC)under Grant(No.62201414,62201432)+2 种基金the Qinchuangyuan Project(OCYRCXM-2022-362)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University under Grant YJSJ24017the Guangzhou Science and Technology Program under Grant 202201011732。
文摘With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金supported by Natural Science Foundation of China(Grant 61901070,61801065,62271096,61871062,U20A20157 and 62061007)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant KJQN202000603 and KJQN201900611)+3 种基金in part by the Natural Science Foundation of Chongqing(Grant CSTB2022NSCQMSX0468,cstc2020jcyjzdxmX0024 and cstc2021jcyjmsxmX0892)in part by University Innovation Research Group of Chongqing(Grant CxQT20017)in part by Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)in part by the Chongqing Graduate Student Scientific Research Innovation Project(CYB22246)。
文摘The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies.
基金supported by Jilin Provincial Science and Technology Department Natural Science Foundation of China(20210101415JC)Jilin Provincial Science and Technology Department Free exploration research project of China(YDZJ202201ZYTS642).
文摘Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.
基金supported in part by the National Natural Science Foundation of China under Grant 62172255in part by the Outstanding Youth Program of Hubei Natural Science Foundation under Grant 2022CFA080the Wuhan AI Innovation Program(2022010702040056)。
文摘Edge caching has emerged as a promising application paradigm in 5G networks,and by building edge networks to cache content,it can alleviate the traffic load brought about by the rapid growth of Internet of Things(IoT)services and applications.Due to the limitations of Edge Servers(ESs)and a large number of user demands,how to make the decision and utilize the resources of ESs are significant.In this paper,we aim to minimize the total system energy consumption in a heterogeneous network and formulate the content caching optimization problem as a Mixed Integer Non-Linear Programming(MINLP).To address the optimization problem,a Deep Q-Network(DQN)-based method is proposed to improve the overall performance of the system and reduce the backhaul traffic load.In addition,the DQN-based method can effectively solve the limitation of traditional reinforcement learning(RL)in complex scenarios.Simulation results show that the proposed DQN-based method can greatly outperform other benchmark methods,and significantly improve the cache hit rate and reduce the total system energy consumption in different scenarios.
基金supported in part by Beijing Natural Science Foundation under Grant L232050in part by the Project of Cultivation for young topmotch Talents of Beijing Municipal Institutions under Grant BPHR202203225in part by Young Elite Scientists Sponsorship Program by BAST under Grant BYESS2023031.
文摘Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments.
基金the National Natural Science Foundation of China under grants 61901078,61871062,and U20A20157in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)under grant 2021FNA04008+5 种基金in part by the China Postdoctoral Science Foundation under grant 2022MD713692in part by the Chongqing Postdoctoral Science Special Foundation under grant 2021XM2018in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyj-zdxmX0024in part by University Innovation Research Group of Chongqing under grant CXQT20017in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN202000626in part by the Youth Innovation Group Support Program of ICE Discipline of CQUPT under grant SCIE-QN-2022-04.
文摘In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the quality of user experience.Considering the difference between global and local video popularities and the time-varying characteristics of video popularity,a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay.Based on both long-term content popularity and short-term content popularity,the proposed caching solution is decouple into the proactive cache stage and the cache update stage.In the proactive cache stage,we develop a proactive cache placement algorithm that can be executed in an off-peak period.In the cache update stage,we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay.Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently.
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
文摘Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
基金the Beijing Natural Science Foundation under Grant NO.L222039.
文摘The upsurge of mobile multimedia traf-fic puts a heavy burden on the cellular network,and wireless caching has emerged as a powerful tech-nique to overcome the backhaul bottleneck and al-leviate the network burden.However,most previ-ous works ignored user mobility,thus not reaping the caching gain from user mobility and having lim-ited practical applications.In this paper,a mobility-aware caching strategy for the software-defined net-work(SDN)-based network is studied.Firstly,since typical mobile user(MU)has multiple opportunities to connect with the nearby MUs and Small-base stations(SBSs),the contact times between MUs as well as be-tween MU and SBSs are derived as the Poisson distri-bution and Gamma distribution.Secondly,we propose a two-tier cooperative caching strategy,where SBSs cache the rateless Fountain code encoded video blocks probabilistically and nonrepeatedly while MUs just store the whole encoded video received last time.The corresponding four-stage transmission process is ana-lyzed,where the key intermediate step is the deriva-tion of the service and the failing probabilities of each transmission manner.Finally,we derive the success-ful offloading rate and average data offloading ra-tio(ADOR)as performance metrics.A system op-timization problem based on ADOR is formulated,and two solutions are proposed,namely,derivativebased solution(DB-Solution)and long-tail distribution approximation(LTD-Approximation).Simulation results demonstrate that the effectiveness of LTDApproximation is similar to the DB-Solution,and the proposed caching strategy can achieve quasi-optimal performance compared with other contrast schemes.
基金supported by the National Key Research and Development Program of China 2021YFB2900504,2020YFB1807900 and 2020YFB1807903by the National Science Foundation of China under Grant 62271062,62071063。
文摘As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file transmission approaches of multi-tier terrestrial networks.In the paper,we introduce edge computing technology into the satellite-terrestrial network and propose a partition-based cache and delivery strategy to make full use of the integrated resources and reducing the backhaul load.Focusing on the interference effect from varied nodes in different geographical distances,we derive the file successful transmission probability of the typical user and by utilizing the tool of stochastic geometry.Considering the constraint of nodes cache space and file sets parameters,we propose a near-optimal partition-based cache and delivery strategy by optimizing the asymptotic successful transmission probability of the typical user.The complex nonlinear programming problem is settled by jointly utilizing standard particle-based swarm optimization(PSO)method and greedy based multiple knapsack choice problem(MKCP)optimization method.Numerical results show that compared with the terrestrial only cache strategy,Ground Popular Strategy,Satellite Popular Strategy,and Independent and identically distributed popularity strategy,the performance of the proposed scheme improve by 30.5%,9.3%,12.5%and 13.7%.
基金supported under the National Basic Research Program(973) of China(Project Number: 2012CB315801)the National Natural Science Fund(Project Number:61300184)the fundamental research funds for the Central Universities(Project Number:2013RC0113)
文摘Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.
文摘为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。
基金This work was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01431)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been designed,including Named Data Networking(NDN),which is designed around content delivery instead of hosts.As data is the central part of the network.Therefore,NDN was developed to get rid of the dependency on IP addresses and provide content effectively.Mobility is one of the major research dimensions for this upcoming internet architecture.Some research has been carried out to solve the mobility issues,but it still has problems like handover delay and packet loss ratio during real-time video streaming in the case of consumer and producer mobility.To solve this issue,an efficient hierarchical Cluster Base Proactive Caching for Device Mobility Management(CB-PC-DMM)in NDN Vehicular Networks(NDN-VN)is proposed,through which the consumer receives the contents proactively after handover during the mobility of the consumer.When a consumer moves to the next destination,a handover interest is sent to the connected router,then the router multicasts the consumer’s desired data packet to the next hop of neighboring routers.Thus,once the handover process is completed,consumers can easily get the content to the newly connected router.A CB-PCDMM in NDN-VN is proposed that improves the packet delivery ratio and reduces the handover delay aswell as cluster overhead.Moreover,the intra and inter-domain handover handling procedures in CB-PC-DMM for NDN-VN have been described.For the validation of our proposed scheme,MATLAB simulations are conducted.The simulation results show that our proposed scheme reduces the handover delay and increases the consumer’s interest satisfaction ratio.The proposed scheme is compared with the existing stateof-the-art schemes,and the total percentage of handover delays is decreased by up to 0.1632%,0.3267%,2.3437%,2.3255%,and 3.7313%at the mobility speeds of 5 m/s,10 m/s,15 m/s,20 m/s,and 25 m/s,and the efficiency of the packet delivery ratio is improved by up to 1.2048%,5.0632%,6.4935%,6.943%,and 8.4507%.Furthermore,the simulation results of our proposed scheme show better efficiency in terms of Packet Delivery Ratio(PDR)from 0.071 to 0.077 and a decrease in the handover delay from 0.1334 to 0.129.
基金supported in part by National Key R&D Program of China(2019YFE0196400)Key Research and Development Program of Shaanxi(2022KWZ09)+4 种基金National Natural Science Foundation of China(61771358,61901317,62071352)Fundamental Research Funds for the Central Universities(JB190104)Joint Education Project between China and Central-Eastern European Countries(202005)the 111 Project(B08038)。
文摘In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.
基金supported in part by the National Natural Science Foundation of China 62072096the Fundamental Research Funds for the Central Universities under Grant 2232020A-12+4 种基金the International S&T Cooperation Program of Shanghai Science and Technology Commission under Grant 20220713000the Young Top-notch Talent Program in Shanghaithe"Shuguang Program"of Shanghai Education Development Foundation and Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University CUSF-DH-D-2019093supported in part by the NSF under grants CNS-2107190 and ECCS-1923717。
文摘Integrating the blockchain technology into mobile-edge computing(MEC)networks with multiple cooperative MEC servers(MECS)providing a promising solution to improving resource utilization,and helping establish a secure reward mechanism that can facilitate load balancing among MECS.In addition,intelligent management of service caching and load balancing can improve the network utility in MEC blockchain networks with multiple types of workloads.In this paper,we investigate a learningbased joint service caching and load balancing policy for optimizing the communication and computation resources allocation,so as to improve the resource utilization of MEC blockchain networks.We formulate the problem as a challenging long-term network revenue maximization Markov decision process(MDP)problem.To address the highly dynamic and high dimension of system states,we design a joint service caching and load balancing algorithm based on the double-dueling Deep Q network(DQN)approach.The simulation results validate the feasibility and superior performance of our proposed algorithm over several baseline schemes.
文摘针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。