Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent...Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.展开更多
The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh...The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.展开更多
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an...With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.展开更多
The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spec...The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.展开更多
This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field progr...This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field programmable gate array (FPGA) device. The modules are simulated, synthesized, and optimized to be loaded on a reconfigurable device as a system-on-chip (SoC) for the IVS electronic device. All the modules of the transmitter are designed as a single embedded module. The bench-top test is completed for testing and verification of the developed modules. The hardware architecture and interfaces are discussed. The IVS signal processing time is analyzed for multiple frequencies. A range of appropriate frequency and two hardware interfaces are proposed. A state-of-the-art FPGA design is employed as a first implementation approach for the IVS prototyping platform. This work is used as an initial step to implement all the modules of the IVS on a single SoC chip.展开更多
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless...In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms.展开更多
文摘Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.
基金supported by Chongqing Big Data Engineering Laboratory for Children,Chongqing Electronics Engineering Technology Research Center for Interactive Learning,Project of Science and Technology Research Program of Chongqing Education Commission of China. (No.KJZD-K201801601).
文摘The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.
文摘With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.
文摘The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.
文摘This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field programmable gate array (FPGA) device. The modules are simulated, synthesized, and optimized to be loaded on a reconfigurable device as a system-on-chip (SoC) for the IVS electronic device. All the modules of the transmitter are designed as a single embedded module. The bench-top test is completed for testing and verification of the developed modules. The hardware architecture and interfaces are discussed. The IVS signal processing time is analyzed for multiple frequencies. A range of appropriate frequency and two hardware interfaces are proposed. A state-of-the-art FPGA design is employed as a first implementation approach for the IVS prototyping platform. This work is used as an initial step to implement all the modules of the IVS on a single SoC chip.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
文摘In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms.