This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishin...This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.展开更多
In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and r...In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
In this paper, we study the three-dimensional incompressible magnetohydrody-namic equations in a smooth bounded domains, in which the viscosity of the fluid and themagnetic diffusivity are concerned with density. The ...In this paper, we study the three-dimensional incompressible magnetohydrody-namic equations in a smooth bounded domains, in which the viscosity of the fluid and themagnetic diffusivity are concerned with density. The existence of global strong solutions isestablished in vacuum cases, provided the assumption that (| |μ(ρ0)||Lp+|| v(P0)||Lq+||b0||L^3 +||ρO||L^∞) (p,q〉3) is small enough, there is not any smallness condition on thevelocity.展开更多
In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic fiel...In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.展开更多
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
Based on local algorithms,some parallel finite element(FE)iterative methods for stationary incompressible magnetohydrodynamics(MHD)are presented.These approaches are on account of two-grid skill include two major phas...Based on local algorithms,some parallel finite element(FE)iterative methods for stationary incompressible magnetohydrodynamics(MHD)are presented.These approaches are on account of two-grid skill include two major phases:find the FE solution by solving the nonlinear system on a globally coarse mesh to seize the low frequency component of the solution,and then locally solve linearized residual subproblems by one of three iterations(Stokes-type,Newton,and Oseen-type)on subdomains with fine grid in parallel to approximate the high frequency component.Optimal error estimates with regard to two mesh sizes and iterative steps of the proposed algorithms are given.Some numerical examples are implemented to verify the algorithm.展开更多
In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expr...In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.展开更多
A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements ...A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure,the velocity field and the magnetic field,in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H^(1)(Ω)-conforming finite elements,respectively.The existence and uniqueness of the approximate solutions are shown.Optimal order error estimates of L^(2)(H^(1))-norm for the velocity field,L^(2)(L^(2))-norm for the pressure and the broken L^(2)(H^(1))-norm for the magnetic field are derived.展开更多
We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified unde...We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified under various Sobolev norms, including the L∞(L2) and L∞(H1) norm.展开更多
In this paper, we consider the viscous incompressible magnetohydrodynamic (MHD) system with a new boundary condition for a general smooth domain in R^3. We obtain the well-posedness of the system and the vanishing v...In this paper, we consider the viscous incompressible magnetohydrodynamic (MHD) system with a new boundary condition for a general smooth domain in R^3. We obtain the well-posedness of the system and the vanishing viscosity limit result.展开更多
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible...This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.展开更多
基金supported by the Scientific Research Funds of Huaqiao University(14BS309)the National Natural Science Foundation of China(11526091)
文摘This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.
基金partly supported by NSFC(1080111110971171)+1 种基金the Natural Science Foundation of Fujian Province of China(2010J05011)the Fundamental Research Funds for the Central Universities(2010121006)
文摘In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金supported by NSFC(11701240)the Natural Science Foundation of Jiangxi Province(2017BAB211001)
文摘In this paper, we study the three-dimensional incompressible magnetohydrody-namic equations in a smooth bounded domains, in which the viscosity of the fluid and themagnetic diffusivity are concerned with density. The existence of global strong solutions isestablished in vacuum cases, provided the assumption that (| |μ(ρ0)||Lp+|| v(P0)||Lq+||b0||L^3 +||ρO||L^∞) (p,q〉3) is small enough, there is not any smallness condition on thevelocity.
文摘In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
基金Project supported by the National Natural Science Foundation of China(Nos.11971410 and12071404)the Natural Science Foundation of Hunan Province of China(No.2019JJ40279)+2 种基金the Excellent Youth Program of Scientific Research Project of Hunan Provincial Department of Education(Nos.18B064 and 20B564)the China Postdoctoral Science Foundation(Nos.2018T110073 and 2018M631402)the International Scientific and Technological Innovation Cooperation Base of Hunan Province for Computational Science(No.2018WK4006)。
文摘Based on local algorithms,some parallel finite element(FE)iterative methods for stationary incompressible magnetohydrodynamics(MHD)are presented.These approaches are on account of two-grid skill include two major phases:find the FE solution by solving the nonlinear system on a globally coarse mesh to seize the low frequency component of the solution,and then locally solve linearized residual subproblems by one of three iterations(Stokes-type,Newton,and Oseen-type)on subdomains with fine grid in parallel to approximate the high frequency component.Optimal error estimates with regard to two mesh sizes and iterative steps of the proposed algorithms are given.Some numerical examples are implemented to verify the algorithm.
文摘In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.
基金supported by the National Natural Science Foundations of China(Grant No.12071443)。
文摘A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure,the velocity field and the magnetic field,in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H^(1)(Ω)-conforming finite elements,respectively.The existence and uniqueness of the approximate solutions are shown.Optimal order error estimates of L^(2)(H^(1))-norm for the velocity field,L^(2)(L^(2))-norm for the pressure and the broken L^(2)(H^(1))-norm for the magnetic field are derived.
基金supported by Natural Science fund of Henan Province(162300410084)the Key Research Fund of Henan Province(16A110019)+1 种基金BSFC(1132006)CIT&TCD(20130312)
文摘We establish magnetic diffusion vanishing limit of the nonlinear pipe Magnetohy- drodynamic flow by the mathematical validity of the Prandtl boundary layer theory with fixed viscosity. The convergence is verified under various Sobolev norms, including the L∞(L2) and L∞(H1) norm.
基金The authors were partially supported by the National Natural Science Foundation of China (No.11371042).
文摘In this paper, we consider the viscous incompressible magnetohydrodynamic (MHD) system with a new boundary condition for a general smooth domain in R^3. We obtain the well-posedness of the system and the vanishing viscosity limit result.
基金supported by the National Natural Science Foundation of China(No.11171223)the Doctoral Program Foundation of Ministry of Education of China(No.20133127110007)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.