The generation and transformation of radicals on the cathode of indirect electrochemical oxidation were studied by chemilumines- cence(CL)and UV-Visible spectra in the reactor with a salt bridge that connected the sep...The generation and transformation of radicals on the cathode of indirect electrochemical oxidation were studied by chemilumines- cence(CL)and UV-Visible spectra in the reactor with a salt bridge that connected the separated chambers.The CL intensity of 4×10^(-9)mol/L luminol on the cathode with bubbling oxygen was about seven times that of the intensity without it,which was because of the generation of reactive oxygen species(ROS).The existence of ROS,especially the generation of the superoxide radical,coul...展开更多
The degradations of hexazinone and aldicarb by direct ozonation combined an advanced oxidation process( AOP) of O3/H2O2 were investigated in this study focusing on the oxidation mechanism by identifying the hydrogen p...The degradations of hexazinone and aldicarb by direct ozonation combined an advanced oxidation process( AOP) of O3/H2O2 were investigated in this study focusing on the oxidation mechanism by identifying the hydrogen peroxide consumption during the oxidation process of the two chemicals. The results showed that H2O2 could enhance the removal rate of the triazine herbicide hexazinone,and it was consumed along with the variation of removal rate in the light of different pH levels. The addition of H2O2 contributed little to the removal of the thiocarbamate herbicide aldicarb and H2O2 content kept constantly throughout the degradation process. Tert-butyl alcohol( TBA) effectively scavenged the ·OH radical for hexazinone,but had no effect on the removal rate of aldicarb. Aldicarb removal was mainly attributed to direct ozonation molecule in both O3( 97.00%) and O3/H2O2( 96.76%)systems. Moreover,sole O3 could hardly oxidize hexazinone whereas·OH radicals contribute respective 74.70% and 97.50% of removal in O3 system and O3/H2O2 AOP. All of these findings suggest that the mechanism of ·OH radical generation and the chain reaction in O3/H2O2 AOP should be further discussed.展开更多
文摘The generation and transformation of radicals on the cathode of indirect electrochemical oxidation were studied by chemilumines- cence(CL)and UV-Visible spectra in the reactor with a salt bridge that connected the separated chambers.The CL intensity of 4×10^(-9)mol/L luminol on the cathode with bubbling oxygen was about seven times that of the intensity without it,which was because of the generation of reactive oxygen species(ROS).The existence of ROS,especially the generation of the superoxide radical,coul...
基金Science and Technology Project of Shenzhen,China(No.JCYJ20120617141700417)Natural Science Foundation of Guangdong Province,China(No.2012040007855)
文摘The degradations of hexazinone and aldicarb by direct ozonation combined an advanced oxidation process( AOP) of O3/H2O2 were investigated in this study focusing on the oxidation mechanism by identifying the hydrogen peroxide consumption during the oxidation process of the two chemicals. The results showed that H2O2 could enhance the removal rate of the triazine herbicide hexazinone,and it was consumed along with the variation of removal rate in the light of different pH levels. The addition of H2O2 contributed little to the removal of the thiocarbamate herbicide aldicarb and H2O2 content kept constantly throughout the degradation process. Tert-butyl alcohol( TBA) effectively scavenged the ·OH radical for hexazinone,but had no effect on the removal rate of aldicarb. Aldicarb removal was mainly attributed to direct ozonation molecule in both O3( 97.00%) and O3/H2O2( 96.76%)systems. Moreover,sole O3 could hardly oxidize hexazinone whereas·OH radicals contribute respective 74.70% and 97.50% of removal in O3 system and O3/H2O2 AOP. All of these findings suggest that the mechanism of ·OH radical generation and the chain reaction in O3/H2O2 AOP should be further discussed.