Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Mean...Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Meanwhile,existing disease control methods often assume users’full compliance with measures like mandatory isolation,which does not align with the actual situation.To address these issues,this paper proposes a prospect theorybased framework to model users’decision-making process in epidemics and analyzes how irrationality affects individuals’behaviors and epidemic dynamics.According to the analysis results,irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.Then,this paper proposes a behavior inducement algorithm to guide individuals’behaviors and control the spread of disease.Simulations and real user tests validate our analysis,and simulation results show that the proposed behavior inducement algorithm can effectively guide individuals’behavior.展开更多
This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru...This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.展开更多
Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is ...Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.展开更多
Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficien...Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.展开更多
Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin laye...Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.展开更多
Background:Irritable bowel syndrome(IBS)substantially affects quality of life and requires early prevention.This study aimed to elucidate the relationships between IBS and daily behaviors,including sedentary behavior(...Background:Irritable bowel syndrome(IBS)substantially affects quality of life and requires early prevention.This study aimed to elucidate the relationships between IBS and daily behaviors,including sedentary behavior(SB),physical activity(PA),and sleep.In particular,it seeks to identify healthy behaviors to reduce IBS risk,which previous studies have rarely addressed.Methods:Daily behaviors were retrieved from self-reported data of 362,193 eligible UK Biobank participants.Incident cases were determined by self-report or health care data according to RomeⅣcriteria.Results:A total of 345,388 participants were IBS-free at baseline,during a median follow-up of 8.45 years,19,885 incident IBS cases were recorded.When examined individually,SB and shorter(≤7 h/day)or longer(>7 h/day)sleep duration were each positively associated with increased IBS risk,and PA was associated with lower IBS risk.The isotemporal substitution model suggested that replacing SB with other activities could provide further protective effects against IBS risk.Among people sleeping≤7 h/day,replacing 1 h of SB with equivalent light PA,vigorous PA,or sleep was associated with 8.1%(95%confidence interval(95%CI):0.901-0.937),5.8%(95%CI:0.896-0.991),and 9.2%(95%CI:0.885-0.932)reduced IBS risk,respectively.For people sleeping>7 h/day,light and vigorous PA were associated with a 4.8%(95%CI:0.926-0.978)and a 12.0%(95%CI:0.815-0.949)lower IBS risk,respectively.These benefits were mostly independent of genetic risk for IBS.Conclusion:SB and unhealthy sleep duration are risk factors for IBS.A promising way to mitigate IBS risk for individuals sleeping≤7 h/day and for those sleeping>7 h/day appears to be by replacing SB with adequate sleep or vigorous PA,respectively,regardless of the genetic predisposition of IBS.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management deci-sions about recirculating the aquaculture system while decreasing labor.Th...Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management deci-sions about recirculating the aquaculture system while decreasing labor.The classic detection approach involves placing sensors on the skin or body of the fish,which may interfere with typical behavior and welfare.The progress of deep learning and computer vision technologies opens up new opportunities to understand the biological basis of this behavior and precisely quantify behaviors that contribute to achieving accurate management in precision farming and higher production efficacy.This study develops an intelligent fish behavior classification using modified invasive weed optimization with an ensemble fusion(IFBC-MIWOEF)model.The presented IFBC-MIWOEF model focuses on identifying the distinct kinds of fish behavior classification.To accomplish this,the IFBC-MIWOEF model designs an ensemble of Deep Learning(DL)based fusion models such as VGG-19,DenseNet,and Effi-cientNet models for fish behavior classification.In addition,the hyperparam-eter tuning of the DL models is carried out using the MIWO algorithm,which is derived from the concepts of oppositional-based learning(OBL)and the IWO algorithm.Finally,the softmax(SM)layer at the end of the DL model categorizes the input into distinct fish behavior classes.The experimental validation of the IFBC-MIWOEF model is tested using fish videos,and the results are examined under distinct aspects.An Extensive comparative study pointed out the improved outcomes of the IFBC-MIWOEF model over recent approaches.展开更多
BACKGROUND With the intensification of social aging,the susceptibility of the elderly population to diseases has attracted increasing attention,especially chronic heart failure(CHF)that accounts for a large proportion...BACKGROUND With the intensification of social aging,the susceptibility of the elderly population to diseases has attracted increasing attention,especially chronic heart failure(CHF)that accounts for a large proportion of the elderly.AIM To evaluate the application value of health concept model-based detailed behavioral care in elderly patients with CHF.METHODS This study recruited 116 elderly CHF patients admitted from October 2018 to October 2020 and grouped them according to the nursing care that they received.The elderly patients who underwent health concept model-based detailed behavioral care were included in a study group(SG;n=62),and those who underwent routine detailed behavioral nursing intervention were included as a control group(CG;n=54).Patients’negative emotions(NEs),quality of life(QoL),and nutritional status were assessed using the self-rating anxiety/depression scale(SAS/SDS),the Minnesota Living with Heart Failure Questionnaire(MLHFQ),and the Modified Quantitative Subjective Global Assessment(MQSGA)of nutrition,respectively.Differences in rehabilitation efficiency,NEs,cardiac function(CF)indexes,nutritional status,QoL,and nursing satisfaction were comparatively analyzed.RESULTS A higher response rate was recorded in the SG vs the CG after intervention(P<0.05).After care,the left ventricular ejection fraction was higher while the left ventricular end-diastolic dimension and left ventricular end systolic diameter were lower in the SG compared with the CG(P<0.05).The post-intervention SAS and SDS scores,as well as MQSGA and MLHFQ scores,were also lower in the SG(P<0.05).The SG was also superior to the CG in the overall nursing satisfaction rate(P<0.05).CONCLUSION Health concept model-based detailed behavioral care has high application value in the nursing care of elderly CHF patients,and it can not only effectively enhance rehabilitation efficiency,but also mitigate patients’NEs and improve their CF and QoL.展开更多
Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry.To study the mechanical behavior of a typical ductile cast iron(GJS-450)with nodular graphite,u...Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry.To study the mechanical behavior of a typical ductile cast iron(GJS-450)with nodular graphite,uni-axial quasi-static and dynamic tensile tests at strain rates of 10^(-4),1,10,100,and 250 s^(-1)were carried out.In order to investigate the influence of stress state on the deformation and fracture parameters,specimens with various geometries were used in the experiments.Stress strain curves and fracture strains of the GJS-450 alloy in the strain rate range of 10^(-4)to 250 s^(-1)were obtained.A strain rate-dependent plastic flow model was proposed to describe the mechanical behavior in the corresponding strain-rate range.The available damage model was extended to take the strain rate into account and calibrated based on the analysis of local fracture strains.Simulations with the proposed plastic flow model and the damage model were conducted to observe the deformation and fracture process.The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys.The predictions with the proposed plastic flow and damage models at various strain rates agree well with the experimental results,which illustrates that the rate-dependent plastic flow and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.The proposed plastic flow and damage models can be used to describe the deformation and fracture analysis of materials with similar properties.展开更多
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un...The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-...The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.展开更多
In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at...In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy.展开更多
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,...The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.展开更多
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
文摘Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Meanwhile,existing disease control methods often assume users’full compliance with measures like mandatory isolation,which does not align with the actual situation.To address these issues,this paper proposes a prospect theorybased framework to model users’decision-making process in epidemics and analyzes how irrationality affects individuals’behaviors and epidemic dynamics.According to the analysis results,irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.Then,this paper proposes a behavior inducement algorithm to guide individuals’behaviors and control the spread of disease.Simulations and real user tests validate our analysis,and simulation results show that the proposed behavior inducement algorithm can effectively guide individuals’behavior.
基金the National Natural Science Foundation of China through Contract/Grant Numbers 12002245,12172263 and 11772237Chongqing Jiaotong University through Contract/Grant Number F1220038.
文摘This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.
基金This work was supported by the National Natural Science Foundation of China(62003359).
文摘Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.
基金Analysis and Research on Online Learning in Higher Vocational Colleges Based on Kirkpatrick Model-Taking the Course of Physiology as an Example(Project No.:D/2021/03/91)The excellent teaching team of Physiology of Suzhou Vocational College of Health Science and Technology in 2019(Project number:JXTD201912).
文摘Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.
基金supported by the National Natural Science Foundation of China(Grant No.22075146)。
文摘Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.
基金supported by grants from China CDC Key Laboratory of Environment and Population Health(2022-CKL-03)Peking University(BMU2021YJ044)supported by the General Program of National Natural Science Foundation of China(32170898)。
文摘Background:Irritable bowel syndrome(IBS)substantially affects quality of life and requires early prevention.This study aimed to elucidate the relationships between IBS and daily behaviors,including sedentary behavior(SB),physical activity(PA),and sleep.In particular,it seeks to identify healthy behaviors to reduce IBS risk,which previous studies have rarely addressed.Methods:Daily behaviors were retrieved from self-reported data of 362,193 eligible UK Biobank participants.Incident cases were determined by self-report or health care data according to RomeⅣcriteria.Results:A total of 345,388 participants were IBS-free at baseline,during a median follow-up of 8.45 years,19,885 incident IBS cases were recorded.When examined individually,SB and shorter(≤7 h/day)or longer(>7 h/day)sleep duration were each positively associated with increased IBS risk,and PA was associated with lower IBS risk.The isotemporal substitution model suggested that replacing SB with other activities could provide further protective effects against IBS risk.Among people sleeping≤7 h/day,replacing 1 h of SB with equivalent light PA,vigorous PA,or sleep was associated with 8.1%(95%confidence interval(95%CI):0.901-0.937),5.8%(95%CI:0.896-0.991),and 9.2%(95%CI:0.885-0.932)reduced IBS risk,respectively.For people sleeping>7 h/day,light and vigorous PA were associated with a 4.8%(95%CI:0.926-0.978)and a 12.0%(95%CI:0.815-0.949)lower IBS risk,respectively.These benefits were mostly independent of genetic risk for IBS.Conclusion:SB and unhealthy sleep duration are risk factors for IBS.A promising way to mitigate IBS risk for individuals sleeping≤7 h/day and for those sleeping>7 h/day appears to be by replacing SB with adequate sleep or vigorous PA,respectively,regardless of the genetic predisposition of IBS.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
文摘Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management deci-sions about recirculating the aquaculture system while decreasing labor.The classic detection approach involves placing sensors on the skin or body of the fish,which may interfere with typical behavior and welfare.The progress of deep learning and computer vision technologies opens up new opportunities to understand the biological basis of this behavior and precisely quantify behaviors that contribute to achieving accurate management in precision farming and higher production efficacy.This study develops an intelligent fish behavior classification using modified invasive weed optimization with an ensemble fusion(IFBC-MIWOEF)model.The presented IFBC-MIWOEF model focuses on identifying the distinct kinds of fish behavior classification.To accomplish this,the IFBC-MIWOEF model designs an ensemble of Deep Learning(DL)based fusion models such as VGG-19,DenseNet,and Effi-cientNet models for fish behavior classification.In addition,the hyperparam-eter tuning of the DL models is carried out using the MIWO algorithm,which is derived from the concepts of oppositional-based learning(OBL)and the IWO algorithm.Finally,the softmax(SM)layer at the end of the DL model categorizes the input into distinct fish behavior classes.The experimental validation of the IFBC-MIWOEF model is tested using fish videos,and the results are examined under distinct aspects.An Extensive comparative study pointed out the improved outcomes of the IFBC-MIWOEF model over recent approaches.
基金Supported by Zhejiang Medical and Health Science and Technology Program(Project Name:Construction and Application of Exercise Fear Intervention Program for Elderly Patients with Chronic Heart Failure Based on HBM and TPB Theory),No.2023KY180.
文摘BACKGROUND With the intensification of social aging,the susceptibility of the elderly population to diseases has attracted increasing attention,especially chronic heart failure(CHF)that accounts for a large proportion of the elderly.AIM To evaluate the application value of health concept model-based detailed behavioral care in elderly patients with CHF.METHODS This study recruited 116 elderly CHF patients admitted from October 2018 to October 2020 and grouped them according to the nursing care that they received.The elderly patients who underwent health concept model-based detailed behavioral care were included in a study group(SG;n=62),and those who underwent routine detailed behavioral nursing intervention were included as a control group(CG;n=54).Patients’negative emotions(NEs),quality of life(QoL),and nutritional status were assessed using the self-rating anxiety/depression scale(SAS/SDS),the Minnesota Living with Heart Failure Questionnaire(MLHFQ),and the Modified Quantitative Subjective Global Assessment(MQSGA)of nutrition,respectively.Differences in rehabilitation efficiency,NEs,cardiac function(CF)indexes,nutritional status,QoL,and nursing satisfaction were comparatively analyzed.RESULTS A higher response rate was recorded in the SG vs the CG after intervention(P<0.05).After care,the left ventricular ejection fraction was higher while the left ventricular end-diastolic dimension and left ventricular end systolic diameter were lower in the SG compared with the CG(P<0.05).The post-intervention SAS and SDS scores,as well as MQSGA and MLHFQ scores,were also lower in the SG(P<0.05).The SG was also superior to the CG in the overall nursing satisfaction rate(P<0.05).CONCLUSION Health concept model-based detailed behavioral care has high application value in the nursing care of elderly CHF patients,and it can not only effectively enhance rehabilitation efficiency,but also mitigate patients’NEs and improve their CF and QoL.
基金Supported by National Natural Science Foundation of China (Grant Nos.12202205,U1730101)the Federal Ministry of Economic Affairs and Energy (BMWi)via the German Federation of Industrial Research Associations‘Otto von Guericke’e.V. (AiF) (IGF-Nr.19567N)Forschungsvereinigung Automobiltechnik e.V. (FAT)。
文摘Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry.To study the mechanical behavior of a typical ductile cast iron(GJS-450)with nodular graphite,uni-axial quasi-static and dynamic tensile tests at strain rates of 10^(-4),1,10,100,and 250 s^(-1)were carried out.In order to investigate the influence of stress state on the deformation and fracture parameters,specimens with various geometries were used in the experiments.Stress strain curves and fracture strains of the GJS-450 alloy in the strain rate range of 10^(-4)to 250 s^(-1)were obtained.A strain rate-dependent plastic flow model was proposed to describe the mechanical behavior in the corresponding strain-rate range.The available damage model was extended to take the strain rate into account and calibrated based on the analysis of local fracture strains.Simulations with the proposed plastic flow model and the damage model were conducted to observe the deformation and fracture process.The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys.The predictions with the proposed plastic flow and damage models at various strain rates agree well with the experimental results,which illustrates that the rate-dependent plastic flow and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.The proposed plastic flow and damage models can be used to describe the deformation and fracture analysis of materials with similar properties.
基金the financial support provided by the National Key R&D Program of China(Grant No.2023YFC3008400)National Natural Science Foundation of China(Grant No.42102317)Qin Chuangyuan“Scientist+Engineer”Team Construction Project of Shaanxi Province in China(Grant No.2023KXJ-178).
文摘The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金The financial support received from the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC1806002)National Natural Science Foundation of China(Grant Nos.42107174,42077241)is gratefully acknowledged.
文摘The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.
基金Funded by the Fundamental Research Program of Shanxi Province(Nos.202103021224282 and 202103021223288)the Central Government Guides Local Funds for Science and Technology Development(Nos.YDZJSX20231A045 and YDZJSX2024D053)。
文摘In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52108168&52208398).
文摘The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.