针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约...针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约束和避障策略;其次,将正态分布采样策略与椭圆采样相结合,获取优质高效采样点;引入人工势场法,自适应调节随机树的搜索步长值;使用向心Catmull-Rom样条插值法对路径进行平滑优化处理;提出针对动态障碍改进的动态窗口法,实现局部动态避障。最后,运用甲板平面环境实验检验算法性能。结果表明,IN-RRT^(*)算法能显著优化搜索时间和搜索路径质量,可应对动态场景规划出合理可行的平滑路径。展开更多
针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RR...针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RRT算法进行优化改进,提出了IRRT(improved rapid-exploration random tree)算法。首先将原有的固定步长改为动态步长,通过判断与目标点的远近界定步长大小,避免了节点的盲目扩张;其次,对随机采样点的生成范围进行了约束,并设置一个同时考虑目标点和随机点的权重来解决传统RRT算法中新生成点仅由随机采样点单一决定的问题;算法陷入最小值时选取随机扰动策略进行逃脱;最后在全局路径的相邻节点间使用动态窗口法进行局部避障。实验仿真结果表明IRRT算法比传统RRT算法在搜索速度上快了3倍多,平均路径比改进前减少25.56%,平均节点减少8.92%,加入动态窗口法后有效提高了机器人实时避障能力,更适合多变的室内环境使用。展开更多
针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
文摘针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约束和避障策略;其次,将正态分布采样策略与椭圆采样相结合,获取优质高效采样点;引入人工势场法,自适应调节随机树的搜索步长值;使用向心Catmull-Rom样条插值法对路径进行平滑优化处理;提出针对动态障碍改进的动态窗口法,实现局部动态避障。最后,运用甲板平面环境实验检验算法性能。结果表明,IN-RRT^(*)算法能显著优化搜索时间和搜索路径质量,可应对动态场景规划出合理可行的平滑路径。
文摘针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RRT算法进行优化改进,提出了IRRT(improved rapid-exploration random tree)算法。首先将原有的固定步长改为动态步长,通过判断与目标点的远近界定步长大小,避免了节点的盲目扩张;其次,对随机采样点的生成范围进行了约束,并设置一个同时考虑目标点和随机点的权重来解决传统RRT算法中新生成点仅由随机采样点单一决定的问题;算法陷入最小值时选取随机扰动策略进行逃脱;最后在全局路径的相邻节点间使用动态窗口法进行局部避障。实验仿真结果表明IRRT算法比传统RRT算法在搜索速度上快了3倍多,平均路径比改进前减少25.56%,平均节点减少8.92%,加入动态窗口法后有效提高了机器人实时避障能力,更适合多变的室内环境使用。
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。