Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integr...Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By...The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband i...The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.展开更多
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st...Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.展开更多
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perce...With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique.展开更多
“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the capti...“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the caption of Fig.8 on Page 604 should be“Diurnal variation of CH4 at the surface from spring to winter.The time units are in UTC.The error bar is 1σfor all the observed hourly mean data within that season at that local time.”展开更多
Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermom...Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.展开更多
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho...To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.展开更多
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly po...Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly polarized laser pulse first compresses the plasma electrons to form a dense flying mirror with a relativistic high speed.The pulse reflected by the mirror is red-shifted to the mid-infrared range.Full three-dimensional simulations demonstrate that the central wavelength of the mid-infrared pulse is tunable from 3µm to 14µm,and the laser energy conversion efficiency can reach as high as 13%.With a 0.5–10 PW incident laser pulse,the generated mid-infrared pulse reaches a peak power of 10–180 TW,which is interesting for various applications in ultrafast and high-field sciences.展开更多
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.
基金supported by grants from the Basic Science Research Program(2021M3H4A1A03047327 and 2022R1A2C3006227)through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planningthe Fundamental R&D Program for Core Technology of Materials and the Industrial Strategic Technology Development Program(20020855),funded by the Ministry of Trade,Industry,and Energy,Republic of Korea+2 种基金the National Research Council of Science&Technology(NST),funded by the Korean Government(MSIT)(CRC22031-000)partially supported by POSCO and Hyundai Mobis,a start-up fund(S-2022-0096-000)the Postdoctoral Research Program of Sungkyunkwan University(2022).
文摘Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
基金This work was supported by the National Natural Science Foundation of China(Nos.12204499 and 62075225)Joint Key Projects of National Natural Science Foundation of China(No.U2032206)+1 种基金CAS Project for Young Scientists in Basic Research(No.YSBR-042)Open Project of State Key Laboratory of Surface Physics at Fudan University(No.KF2022_05).
文摘The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金supported by Yunnan Revitalization Talent Support Program(202305AS350029 and 202305AT350005)Yunnan Key Laboratory of Solar Physics and Space Science(202205AG070009)。
文摘The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.
基金supported by the National Natural Science Foundation of China(Nos.52225402 and U1910206).
文摘Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
基金supported in part by the National Natural Science Foundation of China under Grant 62073164the Shanghai Aerospace Science and Technology Innovation Foundation under Grant SAST2022-013.
文摘With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique.
文摘“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the caption of Fig.8 on Page 604 should be“Diurnal variation of CH4 at the surface from spring to winter.The time units are in UTC.The error bar is 1σfor all the observed hourly mean data within that season at that local time.”
基金supported by the National Key R&D Program of China(2018YFA0702701)the Fundamental Research Funds for the Central Universities(WK3410000015).
文摘Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.
基金supported by Natural Science Foundation of Jilin Province(YDZJ202401352ZYTS).
文摘To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375244,12135009,and 12275356)the Hunan Provincial Innovation Foun-dation for Postgraduate(Grant Nos.CX20210062 and CX20230006).
文摘Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly polarized laser pulse first compresses the plasma electrons to form a dense flying mirror with a relativistic high speed.The pulse reflected by the mirror is red-shifted to the mid-infrared range.Full three-dimensional simulations demonstrate that the central wavelength of the mid-infrared pulse is tunable from 3µm to 14µm,and the laser energy conversion efficiency can reach as high as 13%.With a 0.5–10 PW incident laser pulse,the generated mid-infrared pulse reaches a peak power of 10–180 TW,which is interesting for various applications in ultrafast and high-field sciences.