In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
In this paper,first,Bernstein multi-scaling polynomials(BMSPs)and their properties are introduced.These polynomials are obtained by compressing Bernstein polynomials(BPs)under sub-intervals.Then,by using these polynom...In this paper,first,Bernstein multi-scaling polynomials(BMSPs)and their properties are introduced.These polynomials are obtained by compressing Bernstein polynomials(BPs)under sub-intervals.Then,by using these polynomials,stochastic operational matrices of integration are generated.Moreover,by transforming the stochastic integral equation to a system of algebraic equations and solving this system using Newton’s method,the approximate solution of the stochastic Ito^(^)-Volterra integral equation is obtained.To illustrate the efficiency and accuracy of the proposed method,some examples are presented and the results are compared with other methods.展开更多
We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representat...We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representations for the fundamental solutions of the Schroedinger equation. We also investigate some significant properties of the kernels of these integral representations. The integral representations of fundamental solutions enable to obtain the basic integral equations, which are a powerful tool for solving inverse spectral problems.展开更多
We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary i...We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.展开更多
In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy sa...In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy saving and energy consumption in data center, 5G network and other fields. The gravity heat pipe double cycle air conditioning is a kind of room air conditioning which uses natural cooling source with high efficiency. According to the outdoor meteorological parameters of ten typical cities in China, the calculation model of unit hybrid refrigeration mode is established by using integral method. A simplified algorithm for statistical summation is proposed. Then it compares with the same type of refrigerant pump air conditioner, water-cooled chiller and natural cooling plate. The results show that the annual operation time of gravity heat pipe double cycle air conditioner is 50.8% longer than that of refrigerant pump air conditioner. Then the calculation model is verified by the annual actual operation data of a data center in Changsha. The results show that the double cycle air conditioner with gravity heat pipe can save about 34% energy compared with the chiller. The accuracy of the calculation model is 17.5%, which meets the engineering accuracy requirements. The application of gravity heat pipe double cycle air conditioning in hot summer and cold winter area is a scheme worthy of popularization and application.展开更多
In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductiv...In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.展开更多
The simulation-based decision support system (SBDSS) is designed to achieve a highlevel of performance, flexibility and adaptability, in response to meet the special needs of productionand logistics management during ...The simulation-based decision support system (SBDSS) is designed to achieve a highlevel of performance, flexibility and adaptability, in response to meet the special needs of productionand logistics management during the economic system reform era in China. It consists two subsys-tems: the object library modeler (OLM) and the simulation engine and its manager (SEM). UsingSBDSS the decision makers can work out their optimal production choice under certain circumstancesthrough scenario simulations. And they can test a set of virtual organizations reflecting systems re-form before a real reorganization has been taken, as well as perform a virtual manufacturing processfor a new product design (Copyright @ 1998 IFAC).展开更多
A new kind of four-mode continuous variable coherent-entangled state is proposed in the Fock space by using the technique of integration within an ordered product, which exhibits both the properties of a coherent stat...A new kind of four-mode continuous variable coherent-entangled state is proposed in the Fock space by using the technique of integration within an ordered product, which exhibits both the properties of a coherent state and an entangled state, and spans a complete and orthonormal representation. The conjugate state of the four-mode continuous variable coherent-entangled state is derived by using the Fourier transformation. Moreover, a simple experimental protocol of generating a four-mode continuous variable coherent-entangled state is proposed by using beam splitters. As applications of this four-mode continuous variable coherent-entangled state, a four-mode entangled state and a four-mode squeezing-Fresnel operator are constructed.展开更多
A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. So...A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. Some related issues for the construction, such as form feature handling, constraint satisfaction, design process control, STEP based information integration, are discussed in more detail.展开更多
As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial ne...As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial networks,and terrestrial networks.In 6G SAGINs,a wide variety of network services with the features of diverse requirements,complex mobility,and multi-dimensional resources will pose great challenges to service provisioning,which urges the develop-ment of service-oriented SAGINs.In this paper,we conduct a comprehensive review of 6G SAGINs from a new perspective of service-oriented network.First,we present the requirements of service-oriented networks,and then propose a service-oriented SAGINs management architec-ture.Two categories of critical technologies are presented and discussed,i.e.,heterogeneous resource orchestration technologies and the cloud-edge synergy technologies,which facilitate the interoperability of different network segments and cooperatively orchestrate heterogeneous resources across different domains,according to the service features and requirements.In addition,the potential future research directions are also presented and discussed.展开更多
We introduce a new advection scheme for fluid animation.Our main contribution is the use of long-term temporal changes in pressure to extend the commonly used semi-Lagrangian scheme further back along the time axis.Ou...We introduce a new advection scheme for fluid animation.Our main contribution is the use of long-term temporal changes in pressure to extend the commonly used semi-Lagrangian scheme further back along the time axis.Our algorithm starts by tracing sample points along a trajectory following the velocity field backwards in time for many steps.During this backtracing process,the pressure gradient along the path is integrated to correct the velocity of the current time step.We show that our method effectively suppresses numerical diffusion,retains small-scale vorticity,and provides better long-term kinetic energy preservation.展开更多
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
文摘In this paper,first,Bernstein multi-scaling polynomials(BMSPs)and their properties are introduced.These polynomials are obtained by compressing Bernstein polynomials(BPs)under sub-intervals.Then,by using these polynomials,stochastic operational matrices of integration are generated.Moreover,by transforming the stochastic integral equation to a system of algebraic equations and solving this system using Newton’s method,the approximate solution of the stochastic Ito^(^)-Volterra integral equation is obtained.To illustrate the efficiency and accuracy of the proposed method,some examples are presented and the results are compared with other methods.
文摘We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representations for the fundamental solutions of the Schroedinger equation. We also investigate some significant properties of the kernels of these integral representations. The integral representations of fundamental solutions enable to obtain the basic integral equations, which are a powerful tool for solving inverse spectral problems.
文摘We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.
文摘In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy saving and energy consumption in data center, 5G network and other fields. The gravity heat pipe double cycle air conditioning is a kind of room air conditioning which uses natural cooling source with high efficiency. According to the outdoor meteorological parameters of ten typical cities in China, the calculation model of unit hybrid refrigeration mode is established by using integral method. A simplified algorithm for statistical summation is proposed. Then it compares with the same type of refrigerant pump air conditioner, water-cooled chiller and natural cooling plate. The results show that the annual operation time of gravity heat pipe double cycle air conditioner is 50.8% longer than that of refrigerant pump air conditioner. Then the calculation model is verified by the annual actual operation data of a data center in Changsha. The results show that the double cycle air conditioner with gravity heat pipe can save about 34% energy compared with the chiller. The accuracy of the calculation model is 17.5%, which meets the engineering accuracy requirements. The application of gravity heat pipe double cycle air conditioning in hot summer and cold winter area is a scheme worthy of popularization and application.
基金Project supported by the Advance Research Foundation of China(Grant No.9140Axxx501)the National Defense Advance Research Project,China(Grant No.3151xxxx301)+1 种基金the Frontier Innovation Program,China(Grant No.48xx4)the 111 Project,China(Grant No.B12026)
文摘In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.
文摘The simulation-based decision support system (SBDSS) is designed to achieve a highlevel of performance, flexibility and adaptability, in response to meet the special needs of productionand logistics management during the economic system reform era in China. It consists two subsys-tems: the object library modeler (OLM) and the simulation engine and its manager (SEM). UsingSBDSS the decision makers can work out their optimal production choice under certain circumstancesthrough scenario simulations. And they can test a set of virtual organizations reflecting systems re-form before a real reorganization has been taken, as well as perform a virtual manufacturing processfor a new product design (Copyright @ 1998 IFAC).
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A16)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20103705110001)+1 种基金the University Experimental Technology Foundation of Shandong Province,China(Grant No.S04W138)the Natural Science Foundation of HezeUniversity of Shandong Province,China(Grants Nos.XY07WL01 and XY08WL03)
文摘A new kind of four-mode continuous variable coherent-entangled state is proposed in the Fock space by using the technique of integration within an ordered product, which exhibits both the properties of a coherent state and an entangled state, and spans a complete and orthonormal representation. The conjugate state of the four-mode continuous variable coherent-entangled state is derived by using the Fourier transformation. Moreover, a simple experimental protocol of generating a four-mode continuous variable coherent-entangled state is proposed by using beam splitters. As applications of this four-mode continuous variable coherent-entangled state, a four-mode entangled state and a four-mode squeezing-Fresnel operator are constructed.
文摘A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. Some related issues for the construction, such as form feature handling, constraint satisfaction, design process control, STEP based information integration, are discussed in more detail.
基金supported by the National Key Research and Development Program of China(No.2020YFB1807700).
文摘As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial networks,and terrestrial networks.In 6G SAGINs,a wide variety of network services with the features of diverse requirements,complex mobility,and multi-dimensional resources will pose great challenges to service provisioning,which urges the develop-ment of service-oriented SAGINs.In this paper,we conduct a comprehensive review of 6G SAGINs from a new perspective of service-oriented network.First,we present the requirements of service-oriented networks,and then propose a service-oriented SAGINs management architec-ture.Two categories of critical technologies are presented and discussed,i.e.,heterogeneous resource orchestration technologies and the cloud-edge synergy technologies,which facilitate the interoperability of different network segments and cooperatively orchestrate heterogeneous resources across different domains,according to the service features and requirements.In addition,the potential future research directions are also presented and discussed.
基金supported by NSERC (Grant RGPIN-04360-2014)JSPS KAKENHI (Grant 17H00752)
文摘We introduce a new advection scheme for fluid animation.Our main contribution is the use of long-term temporal changes in pressure to extend the commonly used semi-Lagrangian scheme further back along the time axis.Our algorithm starts by tracing sample points along a trajectory following the velocity field backwards in time for many steps.During this backtracing process,the pressure gradient along the path is integrated to correct the velocity of the current time step.We show that our method effectively suppresses numerical diffusion,retains small-scale vorticity,and provides better long-term kinetic energy preservation.