期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems 被引量:1
1
作者 Yuzhou Li Chuanxia Sun Yinglei Hu 《Computers, Materials & Continua》 SCIE EI 2023年第5期3497-3515,共19页
Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification sy... Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification system propels the need for understanding the root causes of automobile accidents.Also,in the case of insurance,it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing.It is observed that drivers with frequent records of paying“fines”are compelled to pay higher insurance payments than drivers without any penalty records.Thus driver identification act as an important information source for the intelligent transport system.This study focuses on a similar objective to implement a machine learning-based approach for driver identification.Raw data is collected from in-vehicle sensors using the controller area network(CAN)and then converted to binary form using a one-hot encoding technique.Then,the transformed data is dimensionally reduced using the Principal Component Analysis(PCA)technique,and further optimal parameters from the dataset are selected using Whale Optimization Algorithm(WOA).The most relevant features are selected and then fed into a Convolutional Neural Network(CNN)model.The proposed model is evaluated against four different use cases of driver behavior.The results show that the best prediction accuracy is achieved in the case of drivers without glasses.The proposed model yielded optimal accuracy when evaluated against the K-Nearest Neighbors(KNN)and Support Vector Machines(SVM)models with and without using dimensionality reduction approaches. 展开更多
关键词 Driver identification intelligent transport system PCA WOA CNN
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
2
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems
3
作者 Tejasvi Alladi Varun Kohli +1 位作者 Vinay Chamola F.Richard Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1113-1122,共10页
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ... With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies. 展开更多
关键词 Vehicular Ad-hoc Networks(VANETs) intelligent transportation systems(ITS) Artificial Intelligence(AI) Deep Learning Internet of Things(IoT)
下载PDF
Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems
4
作者 R.B.Sarooraj S.Prayla Shyry 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2071-2084,共14页
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch... In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission. 展开更多
关键词 intelligent transportation system(ITS) DBSCAN rain optimization algorithm(ROA) trafficflow control
下载PDF
A Nationwide Evaluation of the State of Practice of Performance Measurements for Intelligent Transportation Systems
5
作者 Kwabena A. Abedi Julius Codjoe Raju Thapa 《Journal of Transportation Technologies》 2023年第2期222-242,共21页
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan... State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes. 展开更多
关键词 intelligent transportation systems ITS Performance Measures ITS Architecture ARC-IT Qualitative Survey EVALUATION NATIONWIDE
下载PDF
Vulnerabilities and integrity of precise point positioning for intelligent transport systems:overview and analysis 被引量:6
6
作者 Yujun Du Jinling Wang +1 位作者 Chris Rizos Ahmed El-Mowafy 《Satellite Navigation》 2021年第1期27-48,共22页
The implementation of Intelligent Transport System (ITS) technology is expected to significantly improve road safety and traffic efficiency. One of the key components of ITS is precise vehicle positioning. Positioning... The implementation of Intelligent Transport System (ITS) technology is expected to significantly improve road safety and traffic efficiency. One of the key components of ITS is precise vehicle positioning. Positioning with decimetre to sub-metre accuracy is a fundamental capability for self-driving, and other automated applications. Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning approach for ITS due to its relatively low-cost and flexibility. However, GNSS PPP is vulnerable to several effects, especially those caused by the challenging urban environments, where the ITS technology is most likely needed. To meet the high integrity requirements of ITS applications, it is necessary to carefully analyse potential faults and failures of PPP and to study relevant integrity monitoring methods. In this paper an overview of vulnerabilities of GNSS PPP is presented to identify the faults that need to be monitored when developing PPP integrity monitoring methods. These vulnerabilities are categorised into different groups according to their impact and error sources to assist integrity fault analysis, which is demonstrated with Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) methods. The main vulnerabilities are discussed in detail, along with their causes, characteristics, impact on users, and related mitigation methods. In addition, research on integrity monitoring methods used for accounting for the threats and faults in PPP for ITS applications is briefly reviewed. Both system-level (network-end) and user-level (user-end) integrity monitoring approaches for PPP are briefly discussed, focusing on their development and the challenges in urban scenarios. Some open issues, on which further efforts should focus, are also identified. 展开更多
关键词 intelligent transport system GNSS precise point positioning VULNERABILITY Fault analysis Integrity monitoring
原文传递
Internet of Things Based Solutions for Transport Network Vulnerability Assessment in Intelligent Transportation Systems
7
作者 Weiwei Liu Yang Tang +3 位作者 Fei Yang Chennan Zhang Dun Cao Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2511-2527,共17页
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner... Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals. 展开更多
关键词 Internet of Things intelligent transport systems vulnerability assessment transport network
下载PDF
Deep Learning Based Autonomous Transport System for Secure Vehicle and Cargo Matching 被引量:1
8
作者 T.Shanthi M.Ramprasath +1 位作者 A.Kavitha T.Muruganantham 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期957-969,共13页
The latest 6G improvements secured autonomous driving's realism in Intelligent Autonomous Transport Systems(IATS).Despite the IATS's benefits,security remains a significant challenge.Blockchain technology has ... The latest 6G improvements secured autonomous driving's realism in Intelligent Autonomous Transport Systems(IATS).Despite the IATS's benefits,security remains a significant challenge.Blockchain technology has grown in popularity as a means of implementing safe,dependable,and decentralised independent IATS systems,allowing for more utilisation of legacy IATS infrastructures and resources,which is especially advantageous for crowdsourcing technologies.Blockchain technology can be used to address security concerns in the IATS and to aid in logistics development.In light of the inadequacy of reliance and inattention to rights created by centralised and conventional logistics systems,this paper discusses the creation of a blockchain-based IATS powered by deep learning for secure cargo and vehicle matching(BDL-IATS).The BDL-IATS approach utilises Ethereum as the primary blockchain for storing private data such as order and shipment details.Additionally,the deep belief network(DBN)model is used to select suitable vehicles and goods for transportation.Additionally,the chaotic krill herd technique is used to tune the DBN model’s hyper-parameters.The performance of the BDL-IATS technique is validated,and the findings are inspected under a variety of conditions.The simulationfindings indicated that the BDL-IATS strategy outperformed recent state-of-the-art approaches. 展开更多
关键词 Blockchain ethereum intelligent autonomous transport system security deep belief network
下载PDF
Cyber-physical-social System in Intelligent Transportation 被引量:8
9
作者 Gang Xiong Fenghua Zhu +4 位作者 Xiwei Liu Xisong Dong Wuling Huang Songhang Chen Kai Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期320-333,共14页
A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliabilit... A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliability of a physical system,such as vehicle collision avoidance and zero-net energy buildings systems.It has become a hot R&D and practical area from US to EU and other countries.In fact,most of physical systems and their cyber systems are designed,built and used by human beings in the social and natural environments.So,social systems must be of the same importance as their CPSs.The indivisible cyber,physical and social parts constitute the cyber-physical-social system(CPSS),a typical complex system and it’s a challengeable problem to control and manage it under traditional theories and methods.An artificial systems,computational experiments and parallel execution(ACP) methodology is introduced based on which data-driven models are applied to social system.Artificial systems,i.e.,cyber systems,are applied for the equivalent description of physical-social system(PSS).Computational experiments are applied for control plan validation.And parallel execution finally realizes the stepwise control and management of CPSS.Finally,a CPSS-based intelligent transportation system(ITS) is discussed as a case study,and its architecture,three parts,and application are described in detail. 展开更多
关键词 Cyber-physical-social system(CPSS) ACP approach intelligent transportation system(ITS) parallel control and management internet of vehicles social transportation network
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security
10
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
Intelligent Framework for Secure Transportation Systems Using Software-Defined-Internet of Vehicles
11
作者 Mohana Priya Pitchai Manikandan Ramachandran +1 位作者 Fadi Al-Turjman Leonardo Mostarda 《Computers, Materials & Continua》 SCIE EI 2021年第9期3947-3966,共20页
The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles ar... The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms. 展开更多
关键词 Internet of things smart cities software-defined network intelligent transportation system fuzzy inference system
下载PDF
An Optimal Deep Learning for Cooperative Intelligent Transportation System
12
作者 K.Lakshmi Srinivas Nagineni +4 位作者 E.Laxmi Lydia A.Francis Saviour Devaraj Sachi Nandan Mohanty Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第7期19-35,共17页
Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a ma... Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a massive quantity of data comprising both mobility and service-related data.For the extraction of meaningful and related details out of the generated data,data science acts as an essential part of the upcoming C-ITS applications.At the same time,prediction of short-term traffic flow is highly essential to manage the traffic accurately.Due to the rapid increase in the amount of traffic data,deep learning(DL)models are widely employed,which uses a non-parametric approach for dealing with traffic flow forecasting.This paper focuses on the design of intelligent deep learning based short-termtraffic flow prediction(IDL-STFLP)model for C-ITS that assists the people in various ways,namely optimization of signal timing by traffic signal controllers,travelers being able to adapt and alter their routes,and so on.The presented IDLSTFLP model operates on two main stages namely vehicle counting and traffic flow prediction.The IDL-STFLP model employs the Fully Convolutional Redundant Counting(FCRC)based vehicle count process.In addition,deep belief network(DBN)model is applied for the prediction of short-term traffic flow.To further improve the performance of the DBN in traffic flow prediction,it will be optimized by Quantum-behaved bat algorithm(QBA)which optimizes the tunable parameters of DBN.Experimental results based on benchmark dataset show that the presented method can count vehicles and predict traffic flowin real-time with amaximumperformance under dissimilar environmental situations. 展开更多
关键词 Cooperative intelligent transportation systems traffic flow prediction deep belief network deep learning vehicle counting
下载PDF
Authentication of Vehicles and Road Side Units in Intelligent Transportation System
13
作者 Muhammad Waqas Shanshan Tu +5 位作者 Sadaqat Ur Rehman Zahid Halim Sajid Anwar Ghulam Abbas Ziaul Haq Abbas Obaid Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2020年第7期359-371,共13页
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ... Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility. 展开更多
关键词 intelligent transportation system AUTHENTICATION rogue attack
下载PDF
Hybrid Algorithm-Driven Smart Logistics Optimization in IoT-Based Cyber-Physical Systems
14
作者 Abdulwahab Ali Almazroi Nasir Ayub 《Computers, Materials & Continua》 SCIE EI 2023年第12期3921-3942,共22页
Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimiza... Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimization methods,such as inefficiencies and high operational costs.To overcome these drawbacks,we introduce the Hybrid Firefly-Spotted Hyena Optimization(HFSHO)algorithm,a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm(FO)with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm(SHO).HFSHO aims to improve logistics path optimization and reduce operational costs.The algorithm’s effectiveness is systematically assessed through rigorous comparative analyses with established algorithms like the Ant Colony Algorithm(ACO),Cuckoo Search Algorithm(CSA)and Jaya Algo-rithm(JA).The evaluation also employs benchmarking methodologies using standardized function sets covering diverse objective functions,including Schwefel’s,Rastrigin,Ackley,Sphere and the ZDT and DTLZ Function suite.HFSHO outperforms these algorithms,achieving a minimum path distance of 546 units,highlighting its prowess in logistics path optimization.This comprehensive evaluation authenticates HFSHO’s exceptional performance across various logistic optimization scenarios.These findings emphasize the critical significance of selecting an appropriate algorithm for logistics path navigation,with HFSHO emerging as an efficient choice.Through the synergistic use of FO and SHO,HFSHO achieves a 15%improvement in convergence,heightened operational efficiency and substantial cost reductions in logistics operations.It presents a promising solution for optimizing logistics paths,offering logistics planners and decision-makers valuable insights and contributing substantively to sustainable sectoral growth. 展开更多
关键词 Hybrid optimization internet of things intelligent transport system optimal path finding smart logistics traffic congestion supply chain
下载PDF
Intelligent Vehicular Communication Using Vulnerability Scoring Based Routing Protocol
15
作者 M.Ramya Devi I.Jasmine Selvakumari Jeya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期31-45,共15页
Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including... Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including such self-driving cars.In the existing systems,there is a maximum communication delay while transmitting the messages.The proposed system uses hybrid Cooperative,Vehicular Communication Management Framework called CAMINO(CA).Further it uses,energy efficient fast message routing protocol with Common Vulnerability Scoring System(CVSS)methodology for improving the communication delay,throughput.It improves security while transmitting the messages through networks.In this research,we present a unique intelligent vehicular infrastructure communication management framework.This framework includes additional stability for both short and long-range mobile communications.It also includes built-in cooperative intelligent transport system(C-ITS)capabilities for experimental verification in real-world contexts.In addition,an energy efficient-fast message distribution routing protocol(EE-FMDRP)has been presented.This combines the benefits between both temporal and direction oriented routing methods.This has been suggested for distributing information from the origin ends to the predetermined objective in a quick,accurate,and effective manner in the event of an emergency.The critical value scale score(CVSS)employ ratings to measure the assault probability in Markov chains.Probabilities of chained transitions allow us to statistically evaluate the integrity of a group of IoVassets.Thus the proposed method helps to enhance the vehicular systems.The CAMINO with energy efficient fast protocol using CVSS(CA-EEFP-CVSS)method outperforms in terms of shortest transmission latency achieves 2.6 sec,highest throughput 11.6%,and lowest energy usage 17%and PDR 95.78%. 展开更多
关键词 intelligent automation intelligent transport system vehicular networks markov chains internet of vehicles critical value scale score
下载PDF
A Multi-Mode Public Transportation System Using Vehicular to Network Architecture
16
作者 Settawit Poochaya Peerapong Uthansakul +8 位作者 Monthippa Uthansakul Patikorn Anchuen Kontorn Thammakul Arfat Ahmad Khan Niwat Punanwarakorn Pech Sirivoratum Aranya Kaewkrad Panrawee Kanpan Apichart Wantamee 《Computers, Materials & Continua》 SCIE EI 2022年第12期5845-5862,共18页
The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system usi... The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus. 展开更多
关键词 Smart transit intelligent transportation system(ITS) dedicated short range communication(DSRC) vehicle to network(V2N) vehicle to everything(V2X) electric vehicle(EV) you only look once(YOLO)
下载PDF
Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques
17
作者 Mohammed S.Alsaqer Majid H.Alsulami +1 位作者 Rami N.Alkhawaji Abdulellah A.Alaboudi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3943-3968,共26页
Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,ma... Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain. 展开更多
关键词 intelligent transportation system security engineering smart systems decision making
下载PDF
Application of Computer Vision Technology in Intelligent Transportation
18
作者 Chao Tang Meirong Tang 《信息工程期刊(中英文版)》 2022年第1期25-31,共7页
With the social development and the continuous improvement of scientific and technological level,the people's living standards continue to improve,and the demand for intelligent technology is also increasing.In re... With the social development and the continuous improvement of scientific and technological level,the people's living standards continue to improve,and the demand for intelligent technology is also increasing.In recent years,with the increase of the number of cars and the frequent occurrence of traffic accidents,the problem of traffic safety has attracted the attention of all sectors of society,and computer vision technology has been gradually appliedto intelligent transportation.This paper analyzes the application of computer vision technology in detail,so as to provide reference for the development of intelligent transportation in our country. 展开更多
关键词 Computer Vision Technology intelligent transportation Application Analysis
下载PDF
Design and Analysis of Traffic Information Transmission System Based on Visible Light Communication 被引量:1
19
作者 Wei Wang Hui-Fang Liu +2 位作者 Ning Wang Zhao Hui Chi Song 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期57-61,共5页
Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho... Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters. 展开更多
关键词 LED Traffic Lights Visible Light Communication(VLC) Audio Information Transmission intelligent transport system(ITS)
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
20
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部