Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on th...In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.展开更多
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金partially supported by the National Natural Science Foundation of China under Grants No.60903176the Provincial Natural Science Foundation of Shandong under Grants No.ZR2012FM010,No.ZR2010FQ028+1 种基金the Program for Youth science and technology starfund of Jinan No.TNK1108the Sub-Project of the National Key Technology R&D Program No.2012BAF12B07-3
文摘In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.