The personalized recommendation of the cloud platform for agricultural knowledge and agricultural intelligent service is one of the core technologies for the development of smart agriculture.Revealing the implicit law...The personalized recommendation of the cloud platform for agricultural knowledge and agricultural intelligent service is one of the core technologies for the development of smart agriculture.Revealing the implicit laws and dynamic characteristics of agricultural knowledge demand is a key problem to be solved urgently.In order to enhance the matching ability of knowledge recommendation and service in human-computer interaction of cloud platform,the mechanism of agricultural knowledge intelligent recommendation service integrated with context-aware model was analyzed.By combining context data acquisition,data analysis and matching,and personalized knowledge recommendation,a framework for agricultural knowledge recommendation service is constructed to improve the ability to extract multidimensional information features and predict sequence data.Using the cloud platform for agricultural knowledge and agricultural intelligent service,this research aims to deliver interesting video service content to users in order to solve key problems faced by farmers,including planting technology,disease control,expert advice,etc.Then the knowledge needs of different users can be met and user satisfaction can be improved.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep rei...In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep reinforcement learning(MARL)method to automate the depth matching of multi-well logs.This method defines multiple top-down dual sliding windows based on the convolutional neural network(CNN)to extract and capture similar feature sequences on well logs,and it establishes an interaction mechanism between agents and the environment to control the depth matching process.Specifically,the agent selects an action to translate or scale the feature sequence based on the double deep Q-network(DDQN).Through the feedback of the reward signal,it evaluates the effectiveness of each action,aiming to obtain the optimal strategy and improve the accuracy of the matching task.Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells,and reduce manual intervention.In the application to the oil field,a comparative analysis of dynamic time warping(DTW),deep Q-learning network(DQN),and DDQN methods revealed that the DDQN algorithm,with its dual-network evaluation mechanism,significantly improves performance by identifying and aligning more details in the well log feature sequences,thus achieving higher depth matching accuracy.展开更多
To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single p...To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single point multiple output intelligent data acquisition and transmission system. It made an in-depth elaboration of the data acquisition and transmission system from hardware design,software architecture and principle,main functions and technical parameters. Finally,it came up with four innovation points:(i) intelligent(automatic)matching a variety of communication protocols for environmental monitoring equipment,(ii) realizing multi-protocol and multi-target parallel data transmission,(iii) realizing remote dynamic input of control instructions through wired or wireless network,and(iv) supporting configuration(process) simulation of field equipment DCS operating conditions.展开更多
To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of tra...To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of traffic images,the introduced algorithm selects the image atoms in a fast and flexible way from an over-complete image dictionary to adaptively match the local structures of traffic images and therefore to implement the sparse decomposition. As compared with the traditional method and a genetic algorithm of matching pursuit by using extensive experiments,the differential evolution achieves much higher quality of traffic images with much less computational time,which indicates the effectiveness of the proposed algorithm.展开更多
There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities be...There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.展开更多
To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response cap...To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response capability in current electric vehicle(EV)opti-mization scheduling,edge intelligence-oriented electric vehicle optimization scheduling and charging station peak-shaving response capability assessment methods are proposed on the basis of the consideration of electric vehicle and charging pile matching.First,an edge-intelligence-oriented electric vehicle regulation frame for charging stations is proposed.Second,continuous time variables are used to represent the available charging periods,establish the charging station controllable EV load model and the future available charging pile mathematical model,and establish the EV and charging pile matching matrix and constraints.Then,with the goal of maximizing the user charging demand and reducing the charging cost,the charging station EV optimal scheduling model is established,and the EV peak response capacity assessment model is further established by considering the EV load shifting constraints under different peak response capacities.Finally,a typical scenario of a real charging station is taken as an example for the analysis of optimal EV scheduling and peak shaving response capacity,and the proposed method is compared with the traditional method to verify the effectiveness and practicality of the proposed method.展开更多
We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation,...We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.展开更多
基金supported by the Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project(No.2021ZD0113604)China Agriculture Research System of MOF and MARA(No.CARS-23-D07)。
文摘The personalized recommendation of the cloud platform for agricultural knowledge and agricultural intelligent service is one of the core technologies for the development of smart agriculture.Revealing the implicit laws and dynamic characteristics of agricultural knowledge demand is a key problem to be solved urgently.In order to enhance the matching ability of knowledge recommendation and service in human-computer interaction of cloud platform,the mechanism of agricultural knowledge intelligent recommendation service integrated with context-aware model was analyzed.By combining context data acquisition,data analysis and matching,and personalized knowledge recommendation,a framework for agricultural knowledge recommendation service is constructed to improve the ability to extract multidimensional information features and predict sequence data.Using the cloud platform for agricultural knowledge and agricultural intelligent service,this research aims to deliver interesting video service content to users in order to solve key problems faced by farmers,including planting technology,disease control,expert advice,etc.Then the knowledge needs of different users can be met and user satisfaction can be improved.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
基金Supported by the China National Petroleum Corporation Limited-China University of Petroleum(Beijing)Strategic Cooperation Science and Technology Project(ZLZX2020-03).
文摘In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep reinforcement learning(MARL)method to automate the depth matching of multi-well logs.This method defines multiple top-down dual sliding windows based on the convolutional neural network(CNN)to extract and capture similar feature sequences on well logs,and it establishes an interaction mechanism between agents and the environment to control the depth matching process.Specifically,the agent selects an action to translate or scale the feature sequence based on the double deep Q-network(DDQN).Through the feedback of the reward signal,it evaluates the effectiveness of each action,aiming to obtain the optimal strategy and improve the accuracy of the matching task.Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells,and reduce manual intervention.In the application to the oil field,a comparative analysis of dynamic time warping(DTW),deep Q-learning network(DQN),and DDQN methods revealed that the DDQN algorithm,with its dual-network evaluation mechanism,significantly improves performance by identifying and aligning more details in the well log feature sequences,thus achieving higher depth matching accuracy.
文摘To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single point multiple output intelligent data acquisition and transmission system. It made an in-depth elaboration of the data acquisition and transmission system from hardware design,software architecture and principle,main functions and technical parameters. Finally,it came up with four innovation points:(i) intelligent(automatic)matching a variety of communication protocols for environmental monitoring equipment,(ii) realizing multi-protocol and multi-target parallel data transmission,(iii) realizing remote dynamic input of control instructions through wired or wireless network,and(iv) supporting configuration(process) simulation of field equipment DCS operating conditions.
文摘To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of traffic images,the introduced algorithm selects the image atoms in a fast and flexible way from an over-complete image dictionary to adaptively match the local structures of traffic images and therefore to implement the sparse decomposition. As compared with the traditional method and a genetic algorithm of matching pursuit by using extensive experiments,the differential evolution achieves much higher quality of traffic images with much less computational time,which indicates the effectiveness of the proposed algorithm.
文摘There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.
基金supported by the Science and Technology Project of State Grid Jiangsu Electric Power Company(J2023114).
文摘To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response capability in current electric vehicle(EV)opti-mization scheduling,edge intelligence-oriented electric vehicle optimization scheduling and charging station peak-shaving response capability assessment methods are proposed on the basis of the consideration of electric vehicle and charging pile matching.First,an edge-intelligence-oriented electric vehicle regulation frame for charging stations is proposed.Second,continuous time variables are used to represent the available charging periods,establish the charging station controllable EV load model and the future available charging pile mathematical model,and establish the EV and charging pile matching matrix and constraints.Then,with the goal of maximizing the user charging demand and reducing the charging cost,the charging station EV optimal scheduling model is established,and the EV peak response capacity assessment model is further established by considering the EV load shifting constraints under different peak response capacities.Finally,a typical scenario of a real charging station is taken as an example for the analysis of optimal EV scheduling and peak shaving response capacity,and the proposed method is compared with the traditional method to verify the effectiveness and practicality of the proposed method.
文摘We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.