Objective:The inter-α-trypsin inhibitor heavy chain 4(ITIH4)protein is involved in the development of tumors.However,the relationship between ITIH4 and ovarian cancer(OC)has not been extensively examined.This study a...Objective:The inter-α-trypsin inhibitor heavy chain 4(ITIH4)protein is involved in the development of tumors.However,the relationship between ITIH4 and ovarian cancer(OC)has not been extensively examined.This study aimed to explore the effect of ITIH4 on OC and to identify its underlying mechanism.Methods:Expressions of ITIH4 in OC tissues and cells were determined using quantitative reverse transcription polymerase chain reaction(RT-qPCR)and western blots.The function of ITIH4 in the OC cell line HO8910 pm was tested via ITIH4 knockdown.The cell growth rate was measured using MTT and colony formation assays.Flow cytometry was performed to evaluate cell cycle progression.Cell migration and invasion abilities were observed using the transwell migration assay.Results:ITIH4 was downregulated in OC tissues and cells.ITIH4 knockdown promoted cell growth and cell cycle progression.Consistent with these results,inhibition of ITIH4 in OC cells significantly increased cell migration and invasion abilities.Cox regression analysis suggests that ITIH4 expression alone is not a good predictor of the prognosis of malignant ovarian tumors in patients.Conclusions:ITIH4 inhibits the progression of OC,suggesting that ITIH4 may be a useful biomarker for OC.This study may provide a potential novel target for the treatment of OC.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-s...Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.展开更多
Uranyl (VI) amidoxime complexes are investigated using relativistic density functional theory. The equilibrium structures, bond orders, and Mulliken populations of the complexes have been systematically investigated...Uranyl (VI) amidoxime complexes are investigated using relativistic density functional theory. The equilibrium structures, bond orders, and Mulliken populations of the complexes have been systematically investigated under a generalized gradient approximation (GGA). Comparison of (acet) uranyl amidoxime complexes ([UO2(AO)n]2-n, 1≤ n≤4) with available experimental data shows an excellent agreement. In addition, the U-O(1), U-O(3), C(1)-N(2), and C(3) N(4) bond lengths of [UO2(CH3AO)4]2- are longer than experimental data by about 0.088, 0.05, 0.1, and 0.056 A. The angles of N(3) O(3)-U, O(2)-N(1)-C(1), N(3)-C(3)-N(4), N(4)-C(3) C(4), and C(4)-C(3)-N(3) are different from each other, which is due to existing interaction between oxygen in uranyl and hydrogen in amino group. This interaction is found to be intra-molecular hydrogen bond. Studies on the bond orders, Mulliken charges, and Mulliken populations demonstrate that uranyl oxo group functions as hydrogen-bond acceptors and H atoms in ligands act as hydrogen-bond donors forming hydrogen bonds within the complex.展开更多
We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias...We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices(83.7%), elliptic Fourier coefficients(98.6%), or the combination of both methods(94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks(Liaodong Bay, LD; Bohai Bay, BH; Huanghe(Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta(50%–54%) and C. stigmatias(65.7%–75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone(70.2%) or in combination with shape indices(75.8%) than using only shape indices(65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.展开更多
基金supported by Guangxi Scientific Research and Technology Development Project (No. 14124004-1-24)
文摘Objective:The inter-α-trypsin inhibitor heavy chain 4(ITIH4)protein is involved in the development of tumors.However,the relationship between ITIH4 and ovarian cancer(OC)has not been extensively examined.This study aimed to explore the effect of ITIH4 on OC and to identify its underlying mechanism.Methods:Expressions of ITIH4 in OC tissues and cells were determined using quantitative reverse transcription polymerase chain reaction(RT-qPCR)and western blots.The function of ITIH4 in the OC cell line HO8910 pm was tested via ITIH4 knockdown.The cell growth rate was measured using MTT and colony formation assays.Flow cytometry was performed to evaluate cell cycle progression.Cell migration and invasion abilities were observed using the transwell migration assay.Results:ITIH4 was downregulated in OC tissues and cells.ITIH4 knockdown promoted cell growth and cell cycle progression.Consistent with these results,inhibition of ITIH4 in OC cells significantly increased cell migration and invasion abilities.Cox regression analysis suggests that ITIH4 expression alone is not a good predictor of the prognosis of malignant ovarian tumors in patients.Conclusions:ITIH4 inhibits the progression of OC,suggesting that ITIH4 may be a useful biomarker for OC.This study may provide a potential novel target for the treatment of OC.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
基金supported by the National Basic Research Program of China (Grant No.2009CB723904)the National Natural Science Foundation of China (Grant No. 41105076)+1 种基金the National Key technology R & D program (Grant No. 2012BAC22B04)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090201)
文摘Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.
基金Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2011A0301003).
文摘Uranyl (VI) amidoxime complexes are investigated using relativistic density functional theory. The equilibrium structures, bond orders, and Mulliken populations of the complexes have been systematically investigated under a generalized gradient approximation (GGA). Comparison of (acet) uranyl amidoxime complexes ([UO2(AO)n]2-n, 1≤ n≤4) with available experimental data shows an excellent agreement. In addition, the U-O(1), U-O(3), C(1)-N(2), and C(3) N(4) bond lengths of [UO2(CH3AO)4]2- are longer than experimental data by about 0.088, 0.05, 0.1, and 0.056 A. The angles of N(3) O(3)-U, O(2)-N(1)-C(1), N(3)-C(3)-N(4), N(4)-C(3) C(4), and C(4)-C(3)-N(3) are different from each other, which is due to existing interaction between oxygen in uranyl and hydrogen in amino group. This interaction is found to be intra-molecular hydrogen bond. Studies on the bond orders, Mulliken charges, and Mulliken populations demonstrate that uranyl oxo group functions as hydrogen-bond acceptors and H atoms in ligands act as hydrogen-bond donors forming hydrogen bonds within the complex.
基金Supported by the National Natural Science Foundation of China(NSFC)(Nos.40976084,U1406403,41121064)
文摘We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices(83.7%), elliptic Fourier coefficients(98.6%), or the combination of both methods(94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks(Liaodong Bay, LD; Bohai Bay, BH; Huanghe(Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta(50%–54%) and C. stigmatias(65.7%–75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone(70.2%) or in combination with shape indices(75.8%) than using only shape indices(65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.