This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)...This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.展开更多
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading...The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.展开更多
There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri...There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.展开更多
The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using...The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using retrospective prediction datasets from the seasonal forecasting models in four operational centers worldwide.Results show that the model predictability of the leading AAM modes is sensitive to how they are defined in different seasonal sequences,especially for the second mode.The first AAM mode,from various seasonal sequences,coincides with the El Niño phase transition in the eastern-central Pacific.The second mode,initialized from boreal summer and autumn,leads El Niño by about one year but can exist during the decay phase of El Niño when initialized from boreal winter and spring.Our findings hint that ENSO,as an early signal,is conducive to better performance of model predictions in capturing the spatiotemporal variations of the leading AAM modes.Still,the persistence barrier of ENSO in spring leads to poor forecasting skills of spatial features.The multimodel ensemble(MME)mean shows some advantage in capturing the spatiotemporal variations of the AAM modes but does not provide a significant improvement in predicting its temporal features compared to the best individual models in predicting its temporal features.The BCC_CSM1.1M shows promising skill in predicting the two AAM indices associated with two leading AAM modes.The predictability demonstrated in this study is potentially useful for AAM prediction in operational and climate services.展开更多
The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of...The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM.展开更多
The frequent occurrence of dry and hot(DH)days in South China in summer has a negative impact on social development and human health.This study explored the variation characteristics of DH days and the possible reason...The frequent occurrence of dry and hot(DH)days in South China in summer has a negative impact on social development and human health.This study explored the variation characteristics of DH days and the possible reasons for this knotty problem.The findings revealed a notable increase in the number of DH days across most stations,indicating a significant upward trend.Additionally,DH events were observed to occur frequently.The number of DH days increased during 1970-1990,decreased from 1991 to 1997,and stayed stable after 1997.The key climate factors affecting the interannual variability of the number of DH days were the Indian Ocean Basin warming(IOBW)in spring and the East Asian Summer Monsoon(EASM).Compared with the negative phase of IOBW,in the positive phase of IOBW,500 hPa and 850 hPa geopotential height enhanced,the West Pacific subtropical high strengthened and extended abnormally to the west,more solar radiation reached the surface,surface outgoing longwave radiation increased,and there was an anomalous anticyclone in eastern South China.The atmospheric circulation characteristics of the positive and negative phases of ESAM were opposite to those of IOBW,and the abnormal circulation of the positive(negative)phases of ESAM was unfavorable(favorable)for the increase in the number of DH days.A long-term prediction model for the number of summer DH days was established using multiple linear regression,incorporating the key climate factors.The correlation coefficient between the observed and predicted number of DH days was 0.65,and the root-mean-square error was 2.8.In addition,independent forecasts for 2019 showed a deviation of just 1 day.The results of the independent recovery test confirmed the stability of the model,providing evidence that climatic factors did have an impact on DH days in South China.展开更多
In this paper, results from a pilot study for the South China Sea Monsoon Experiment are reported. Based on analyses of 9 years of pentad and monthly mean data, the climatology of subseasonal features and interannual ...In this paper, results from a pilot study for the South China Sea Monsoon Experiment are reported. Based on analyses of 9 years of pentad and monthly mean data, the climatology of subseasonal features and interannual variability of the Southeast Asian monsoon (SEAM) are documented. The present analysis is focused on the sudden onset of the South China Sea monsoon and its relation to the atmospheric and oceanic processes on the entire Asian monsoon region. \ \ It is found that the onset of the SEAM occurs around mid-May, signaling the earliest stage of the entire Asian summer monsoon system. The establishment of monsoon rainfall over the South China Sea is abrupt, being accompanied by substantial changes in the large scale atmospheric circulation and sea surface temperature in the adjacent oceans. The onset and fluctuations of SEAM involve the interaction and metamorphosis of the large scale convection over the Indo-China, the South China Sea and the southern Bay of Bengal. Results show that the onset time of the SEAM differs greatly from one year to another. The delayed (advanced) onset of the monsoon may be related to basin-wide warm (cold) events of the Pacific and Indian Oceans. We also present evidence showing that the SEAM fluctuations in May may foreshadow the development of the full-scale Asian summer monsoon during the subsequent months.展开更多
Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon...Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.展开更多
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ...China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.展开更多
On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the...On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the data from the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) reanalysis-2 from 1979 to 2002, the authors investigate the interannual variations of the EAJS's meridional displacement in summer and their associations with the variations of the South Asian high (SAH) and the western North Pacific subtropical high (WNPSH), which are dominant circulation features in the upper and lower troposhere, respectively. The result from an EOF analysis shows that the meridional displacement is the most remarkable feature of the interannual variations of the EAJS in each month of summer and in summer as a whole. A composite analysis indicates that the summer (June-July-August, JJA) EAJS index, which is intended to depict the interannual meridional displacement of the EAJS, is not appropriate because the anomalies of the zonal wind at 200 hPa (U200) in July and August only, rather than in June, significantly contribute to the summer EAJS index. Thus, the index for each month in summer is defined according to the location of the EAJS core in each month. Composite analyses based on the monthly indexes show that corresponding to the monthly equatorward displacement of the EAJS, the South Asian high (SAH) extends southeastward clearly in July and August, and the western North Pacific subtropical high (WNPSH) withdraws southward in June and August.展开更多
The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show...The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years. The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.展开更多
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional ch...Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.展开更多
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is...Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.展开更多
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and th...The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.展开更多
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f...Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).展开更多
Forced by the realistic SST, an atmospheric general circulation model (AGCM) with 9 sigma levels in vertical and rhomboidal truncation at wave number 15 in the horizontal is run for 16 years with and without the Tibet...Forced by the realistic SST, an atmospheric general circulation model (AGCM) with 9 sigma levels in vertical and rhomboidal truncation at wave number 15 in the horizontal is run for 16 years with and without the Tibetan Plateau respectively(called TP and NTP experiment). The result simulated is used to investigate the influence of the Tibetan Plateau on the interannual variability of Asian monsoon. It is found that the interannual variability of Asian monsoon associated with El Nino/La Nina in NTP experiment is quite different from that in TP experiment. With the Tibetan Plateau included, the results are consistent with the observation very well. To a great extent, the anomalous variation of Asian monsoon during El Nino/La Nina period in observation is due to the existence of the Tibetan Plateau. Therefore, the topography of the Tibetan Plateau is an important factor to the interannual variability of Asian monsoon.展开更多
Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asi...Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’.展开更多
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly...The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.展开更多
The interannual variation of Asian winter (NE) monsoon and its influence is studied using the long-term integration of Max-Plank Institute ECHAM3(T42 L19) model. The simulation well reproduces the main features of th...The interannual variation of Asian winter (NE) monsoon and its influence is studied using the long-term integration of Max-Plank Institute ECHAM3(T42 L19) model. The simulation well reproduces the main features of the climatological mean Asian winter monsoon and shows pronounced difference of atmospheric circulation between strong and weak winter monsoon and for the consecutive seasons to follow. Most striking is the appearance and persistence of an anomalous cyclonic flow over the western Pacific and enhanced Walker circulation for strong winter monsoon in agreement with the observation. The contrast in summer rainfall patterns of both East China and India can also be discerned in the simulation. Comparison of three sets of experiments with different SST shows that the forcing from the anomalies of global SST makes a major contribution to the interannual variability of Asiao winter monsoon and, in particular, to the interseasonal persistence of the salient features of circulation. The SSTA over the tropical western Pacific also plays an important part of its own in modulating the Walker circulation and the extratropical flow patterns. The apparent effect of strong NE monsoon is to enhance the convection over the tropical western Pacific. This effect, on the one hand, leads to a strengthening of SE trades to the east and extra westerly flow to the west, thus favorable to maintaining a specific pattern of SSTA. On the other hand, the thermal forcing associated with the SSTA acts to strengthen the extratropical flow pattern which is, in turn, conducive to stronger monsoon activity. The result seems to suggest a certain self-sustained regime in the air-sea system, which is characterized by two related interactions, namely the air-sea and tropical-extratropical interactions with intermittent outburst of NE cold surge as linkage. There is a connection between the strength of the Asian winter monsoon and the precipitation over China in the following summer. Links between these two variabilities are mainly through SST anomalies but snow over Asia is a contributing factor as well.展开更多
Based on NCEP/ NCAR reanalysis data during 1980-1994, seasonally and interannual variability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum o...Based on NCEP/ NCAR reanalysis data during 1980-1994, seasonally and interannual variability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum of seasonally in the tropics, the subtropics and high latitudes, which is called the tropical, subtropical and temperate-frigid monsoon region respectively. In the upper troposphere, the subtropical monsoon combines with the tropical monsoon as a nonseparably planetary monsoon system. In the stratosphere, there is a belt with very large seasonality in each hemisphere caused by the inversely seasonal circulation and by the establishment and collapse of the night jet. (2) Seasonal variation of the large-scale monsoon may generally be attributed to that of the zonal wind, however, seasonal variation of the meridional wind is of great importance in East Asian monsoon region. (3) In monsoon region, interannual variability of the atmospheric general circulation is closely related to seasonal variation of monsoon, while in the tropical Pacific, it may considerably be influenced by the external factors such as sea surface temperature (SST) anomalies associated with El Nino or La Nina event. Moreover, interannual variability undergoes a pronounced annual cycle.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41991283).
文摘This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.
基金Guangdong Basic and Applied Basic Research Foundation(2019A1515011808)Science and Technology Planning Program of Guangdong Province(2021B1212020016)。
文摘The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975080)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242206,41975094 and 41905062)the National Key Research and Development Program on monitoring,Early Warning and Prevention of Major Natural Disaster(Grant Nos.2017YFC1502302 and 2018YFC1506005)+1 种基金the Basic Research and Operational Special Project of CAMS(Grant No.2021Z007)the Met Office Climate Science for Service Partnership(CSSP)China.
文摘The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using retrospective prediction datasets from the seasonal forecasting models in four operational centers worldwide.Results show that the model predictability of the leading AAM modes is sensitive to how they are defined in different seasonal sequences,especially for the second mode.The first AAM mode,from various seasonal sequences,coincides with the El Niño phase transition in the eastern-central Pacific.The second mode,initialized from boreal summer and autumn,leads El Niño by about one year but can exist during the decay phase of El Niño when initialized from boreal winter and spring.Our findings hint that ENSO,as an early signal,is conducive to better performance of model predictions in capturing the spatiotemporal variations of the leading AAM modes.Still,the persistence barrier of ENSO in spring leads to poor forecasting skills of spatial features.The multimodel ensemble(MME)mean shows some advantage in capturing the spatiotemporal variations of the AAM modes but does not provide a significant improvement in predicting its temporal features compared to the best individual models in predicting its temporal features.The BCC_CSM1.1M shows promising skill in predicting the two AAM indices associated with two leading AAM modes.The predictability demonstrated in this study is potentially useful for AAM prediction in operational and climate services.
基金Program of National Science Foundation of China(42175018,42088101)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM.
基金National Natural Science Foundation of China(92044302,41805115)Guangzhou Municipal Science and Technology Project(202002020065)。
文摘The frequent occurrence of dry and hot(DH)days in South China in summer has a negative impact on social development and human health.This study explored the variation characteristics of DH days and the possible reasons for this knotty problem.The findings revealed a notable increase in the number of DH days across most stations,indicating a significant upward trend.Additionally,DH events were observed to occur frequently.The number of DH days increased during 1970-1990,decreased from 1991 to 1997,and stayed stable after 1997.The key climate factors affecting the interannual variability of the number of DH days were the Indian Ocean Basin warming(IOBW)in spring and the East Asian Summer Monsoon(EASM).Compared with the negative phase of IOBW,in the positive phase of IOBW,500 hPa and 850 hPa geopotential height enhanced,the West Pacific subtropical high strengthened and extended abnormally to the west,more solar radiation reached the surface,surface outgoing longwave radiation increased,and there was an anomalous anticyclone in eastern South China.The atmospheric circulation characteristics of the positive and negative phases of ESAM were opposite to those of IOBW,and the abnormal circulation of the positive(negative)phases of ESAM was unfavorable(favorable)for the increase in the number of DH days.A long-term prediction model for the number of summer DH days was established using multiple linear regression,incorporating the key climate factors.The correlation coefficient between the observed and predicted number of DH days was 0.65,and the root-mean-square error was 2.8.In addition,independent forecasts for 2019 showed a deviation of just 1 day.The results of the independent recovery test confirmed the stability of the model,providing evidence that climatic factors did have an impact on DH days in South China.
文摘In this paper, results from a pilot study for the South China Sea Monsoon Experiment are reported. Based on analyses of 9 years of pentad and monthly mean data, the climatology of subseasonal features and interannual variability of the Southeast Asian monsoon (SEAM) are documented. The present analysis is focused on the sudden onset of the South China Sea monsoon and its relation to the atmospheric and oceanic processes on the entire Asian monsoon region. \ \ It is found that the onset of the SEAM occurs around mid-May, signaling the earliest stage of the entire Asian summer monsoon system. The establishment of monsoon rainfall over the South China Sea is abrupt, being accompanied by substantial changes in the large scale atmospheric circulation and sea surface temperature in the adjacent oceans. The onset and fluctuations of SEAM involve the interaction and metamorphosis of the large scale convection over the Indo-China, the South China Sea and the southern Bay of Bengal. Results show that the onset time of the SEAM differs greatly from one year to another. The delayed (advanced) onset of the monsoon may be related to basin-wide warm (cold) events of the Pacific and Indian Oceans. We also present evidence showing that the SEAM fluctuations in May may foreshadow the development of the full-scale Asian summer monsoon during the subsequent months.
文摘Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.
基金supported by the National Natural Science Foundation of China(Grant Nos.91744311 and91544219)the National Key Research and Development Program of China(Grant No.2016YFA0600203)the National Natural Science Foundation of China(Grant No.41405138)
文摘China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.
基金This work was supported by the Chinese Academy of Sciences(Grant No.KZCX3 SW-221)the National Natural Science Foundation of China under Grant No.40221503.
文摘On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the data from the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) reanalysis-2 from 1979 to 2002, the authors investigate the interannual variations of the EAJS's meridional displacement in summer and their associations with the variations of the South Asian high (SAH) and the western North Pacific subtropical high (WNPSH), which are dominant circulation features in the upper and lower troposhere, respectively. The result from an EOF analysis shows that the meridional displacement is the most remarkable feature of the interannual variations of the EAJS in each month of summer and in summer as a whole. A composite analysis indicates that the summer (June-July-August, JJA) EAJS index, which is intended to depict the interannual meridional displacement of the EAJS, is not appropriate because the anomalies of the zonal wind at 200 hPa (U200) in July and August only, rather than in June, significantly contribute to the summer EAJS index. Thus, the index for each month in summer is defined according to the location of the EAJS core in each month. Composite analyses based on the monthly indexes show that corresponding to the monthly equatorward displacement of the EAJS, the South Asian high (SAH) extends southeastward clearly in July and August, and the western North Pacific subtropical high (WNPSH) withdraws southward in June and August.
基金This study is supported by the National Natural Science Foundation of China (Grant No. 40730952) Project KZCX2-YW-220, Program of Knowledge Innovation for the 3rd Period, Chinese Academy of Sciencesthe Project G2006CB403600, the "National Key Program for Developing Basic Sciences", respectively.
文摘The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years. The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.
基金supported by the CAS Innovation Key Program (Grant No. KZCX2-YW-BR-14)National Basic Research Program of China (2011CB309704)+1 种基金Special Scientific Research Project for Public Interest (GrantNo. GYHY201006021)the National Natural Science Foundation of China (Grant Nos. 40890155, 40775051,U0733002)
文摘Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.
基金supported jointly by the National Key Basic Research Development Program(Grant No.G1999043403)the Knowledge Innovation Project of the Chinese Academy of Sciences(CAS)(Grant No.KZCX3-SW-218)+1 种基金the National Natural Science Foundation of China project for young scientists fund(No.40305012) the Western Project of the CAS (KZCX1-10-07).
文摘Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.
文摘The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.
文摘Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).
文摘Forced by the realistic SST, an atmospheric general circulation model (AGCM) with 9 sigma levels in vertical and rhomboidal truncation at wave number 15 in the horizontal is run for 16 years with and without the Tibetan Plateau respectively(called TP and NTP experiment). The result simulated is used to investigate the influence of the Tibetan Plateau on the interannual variability of Asian monsoon. It is found that the interannual variability of Asian monsoon associated with El Nino/La Nina in NTP experiment is quite different from that in TP experiment. With the Tibetan Plateau included, the results are consistent with the observation very well. To a great extent, the anomalous variation of Asian monsoon during El Nino/La Nina period in observation is due to the existence of the Tibetan Plateau. Therefore, the topography of the Tibetan Plateau is an important factor to the interannual variability of Asian monsoon.
文摘Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’.
基金supported by the foundation from:the program of the National Natural Science Foundation of China(40675037)the key program of the Sichuan Province Youth Science and Technology Fund(05ZQ026-023)the opening project of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences.
文摘The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.
文摘The interannual variation of Asian winter (NE) monsoon and its influence is studied using the long-term integration of Max-Plank Institute ECHAM3(T42 L19) model. The simulation well reproduces the main features of the climatological mean Asian winter monsoon and shows pronounced difference of atmospheric circulation between strong and weak winter monsoon and for the consecutive seasons to follow. Most striking is the appearance and persistence of an anomalous cyclonic flow over the western Pacific and enhanced Walker circulation for strong winter monsoon in agreement with the observation. The contrast in summer rainfall patterns of both East China and India can also be discerned in the simulation. Comparison of three sets of experiments with different SST shows that the forcing from the anomalies of global SST makes a major contribution to the interannual variability of Asiao winter monsoon and, in particular, to the interseasonal persistence of the salient features of circulation. The SSTA over the tropical western Pacific also plays an important part of its own in modulating the Walker circulation and the extratropical flow patterns. The apparent effect of strong NE monsoon is to enhance the convection over the tropical western Pacific. This effect, on the one hand, leads to a strengthening of SE trades to the east and extra westerly flow to the west, thus favorable to maintaining a specific pattern of SSTA. On the other hand, the thermal forcing associated with the SSTA acts to strengthen the extratropical flow pattern which is, in turn, conducive to stronger monsoon activity. The result seems to suggest a certain self-sustained regime in the air-sea system, which is characterized by two related interactions, namely the air-sea and tropical-extratropical interactions with intermittent outburst of NE cold surge as linkage. There is a connection between the strength of the Asian winter monsoon and the precipitation over China in the following summer. Links between these two variabilities are mainly through SST anomalies but snow over Asia is a contributing factor as well.
文摘Based on NCEP/ NCAR reanalysis data during 1980-1994, seasonally and interannual variability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum of seasonally in the tropics, the subtropics and high latitudes, which is called the tropical, subtropical and temperate-frigid monsoon region respectively. In the upper troposphere, the subtropical monsoon combines with the tropical monsoon as a nonseparably planetary monsoon system. In the stratosphere, there is a belt with very large seasonality in each hemisphere caused by the inversely seasonal circulation and by the establishment and collapse of the night jet. (2) Seasonal variation of the large-scale monsoon may generally be attributed to that of the zonal wind, however, seasonal variation of the meridional wind is of great importance in East Asian monsoon region. (3) In monsoon region, interannual variability of the atmospheric general circulation is closely related to seasonal variation of monsoon, while in the tropical Pacific, it may considerably be influenced by the external factors such as sea surface temperature (SST) anomalies associated with El Nino or La Nina event. Moreover, interannual variability undergoes a pronounced annual cycle.