The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during hi...The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional(2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk,(such as 1 ms-2 ms), its open-circuit voltage V oc almost remains unchanged, and the short-circuit current density J sc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk(for instance, 〈 500 μs) wafer or the wafer contaminated during device processing, the V oc increases monotonically but the J sc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in J sc.展开更多
The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because curre...The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.展开更多
Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-...Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-HJ solar cell. In this paper, detailed numerical simulations have been performed to investigate the potential of front surface field (FSF) offered by stack of n-type doped and intrinsic amorphous silicon (a-Si) layers on the front surface of IBC-HJ solar cells. Simulations results clearly indicate that the electric field of FSF should be strong enough to repel minority carries and cumulate major carriers near the front surface. However, the overstrong electric field tends to drive electrons into a-Si layer, leading to severe recombination loss. The n-type doped amorphous silicon (n-a-Si) layer has been optimized in terms of doping level and thickness. The optimized intrinsic amorphous silicon (i-a-Si) layer should be as thin as possible with an energy band gap (Es) larger than 1.4 eV. In addition, the simulations concerning interface defects strongly suggest that FSF is essential when the front surface is not passivated perfectly. Without FSF, the IBC-HJ solar cells may become more sensitive to interface defect density.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor ...We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor improves more significantly detection sensitivity than does a sensor with sandwich configurations.展开更多
This paper presents a development of a low-cost miniature humidity sensor with an interdigitated aluminium electrode connected in parallel on quartz substrate.Interdigitated capacitive device has been fabricated using...This paper presents a development of a low-cost miniature humidity sensor with an interdigitated aluminium electrode connected in parallel on quartz substrate.Interdigitated capacitive device has been fabricated using the photolithography method.The aluminium electrode was covered with sensitive film of a nanoporous thin film of γ-Al_(2)O_(3) made from novel solgel technique.Nanostructured thin film offers very high surface to volume ratio with distribution of micro pores for moisture detection.Pore morphologies of the film have been studied by field emission electron microscope and Xray diffraction methods.Impedance measurement of the miniature capacitive humidity sensor toward relative humidity was investigated at room temperature by Agilent 4294A impedance analyzer(Agilent,Santa Clara,CA,USA).The device exhibits short response and recovery times and good repeatability.展开更多
Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide meas...Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.展开更多
Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital mic...Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.展开更多
Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in...Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.展开更多
A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conv...A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.展开更多
Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and ...Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.展开更多
In this paper,pure polyaniline (PAN:Emeraldine base (EB) form) films and the mixed LB films of PAN and acetic acid (AA) with various layers were prepared by Langmuir-Blodgett (LB) technique.PAN based gas sensors wer...In this paper,pure polyaniline (PAN:Emeraldine base (EB) form) films and the mixed LB films of PAN and acetic acid (AA) with various layers were prepared by Langmuir-Blodgett (LB) technique.PAN based gas sensors were fabricated by deposited PAN based LB thin films on the interdigitated electrodes.The gas-sensitivity to NO_2 of PAN based gas sensors with different layers was studied.It is found that pure polyaniline LB films present higher sensitivity,responsivity and reversibility to NO_2 gas compared with polyaniline and acetic acid mixed LB films.The response time of 3-layer and 15-layer pure polyaniline LB films to 20μg/g NO_2 gas is about 10 s and 30 s,respectively.The recovery time of the 15-layer pure polyaniline LB films is close to 5 min.展开更多
This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such senso...This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such sensors were used for soil suction measurement. They are microfabricated relative humidity sensors (footprint area 11,000 μm × 22,000 μm) operating based on changes in electrical resistivity detected by a cerium doped silica titania film deposited using a sol-gel technique. Their design required gathering experts in several engineering specialties. The working principle of the sensors is based on water vapour equilibrium between the air in the soil and in the sol-gel pores, due to the contact between the two porous materials. The spacing between interdigitated aluminium electrodes was optimized to improve the sensing properties of the sol-gel. The calibration of the different prototypes was done against compacted clay, varying the spacing between 100 and 700 μm. The sensors were also incorporated in soil samples for suction measurement during wetting and drying paths. They were validated by comparing the readings with those from a water dew point potentiometer. From this study it was possible to determine the optimum electrodes spacing of 200 μm. Error was explained by sol-gel heterogeneity effect and by the resolution of the sensing area provided by the electrodes spacing. When comparing with other sensors operating inside soil specimens in standard laboratorial tests, these sol-gel sensors extend the operation range available with the alternative technologies: while conventional tensiometers measure suction ranges from 0 to 1.8 MPa, our sensors demonstrate good results between 1 to 10 MPa (and higher).展开更多
A soft-chemical method has been developed for the synthesis of nano-crystalline powders of silver decamolybdate. Gas sensing characteristics of this composition both in porous pellet and thin film configurations were ...A soft-chemical method has been developed for the synthesis of nano-crystalline powders of silver decamolybdate. Gas sensing characteristics of this composition both in porous pellet and thin film configurations were investigated. The compound Ag6Mo10O33 was found to sense selectively ammonia at 503 K. Above 503 K it has significant cross sensitivity to petroleum gas (PG). Spin coated thin films exhibited selective sensing towards PG.展开更多
A microchip interdigitated electrode with a sequential signal generator has been developed for traveling wave dielectrophoresis (twDEP) of biological cell suspensions. The electrode was fabricated on a microscope glas...A microchip interdigitated electrode with a sequential signal generator has been developed for traveling wave dielectrophoresis (twDEP) of biological cell suspensions. The electrode was fabricated on a microscope glass slide and coated with a 0.5 μm thickness of gold through a sputtering technique which was designed for large-scale inductions of cells rather than for individual cells as in previous versions of our device. As designed for a representative cell size of 10 μm, the electrode array was 50 μm in width to allow large numbers (>106) of cells to be processed. The sequential signal generator produces an arbitrary AC quadrature-phase to generate traveling electric field for a microchip interdigitated electrode. Each phase signal can be automatically altered and alternated with the other phases within interval time of 0.01-30 seconds (controlled by programming). We demonstrate the system could be used to estimate the dielectric properties of the yeast Saccharomyces cerivisiae TISTR 5088, the green alga Tetraselmis sp. and human red blood cells (HRBCs) through curve-fitting of dielectro- phoretic velocities and critical frequencies.展开更多
Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a ...Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited.By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs,the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited,forming the first flexible and wearable in-plane embroidery SCs.The electrochemical measurements manifested that the highest specific capacitance was nearly 156.6 mF cm?2(65.72 F g?1)at the current density of 0.6 mA cm?2(0.25 A g?1),with a high energy density of 0.013 mWh cm?2(5.55 Wh kg?1)at a power density of 0.24 mW cm?2(100 W kg?1).As a demonstration,a monogrammed pattern was ingeniously designed and embroidered on the laboratory gown as the wearable in-plane SCs,which showed both decent electrochemical performance and excellent flexibility.展开更多
A compact interdigital H-mode drift-tube linac (IH-DTL) with the alternating-phase-focusing (APF) method, working at 325 MHz was designed for an injector of a proton medical accelerator. When fed in with a proper RF (...A compact interdigital H-mode drift-tube linac (IH-DTL) with the alternating-phase-focusing (APF) method, working at 325 MHz was designed for an injector of a proton medical accelerator. When fed in with a proper RF (radio frequency) power, the DTL cavity could establish the corresponding electromagnetic field to accelerate the ‘‘proton bunches’’ from an input energy of 3 MeV to an output energy of 7 MeV successfully, without any additional radial focusing elements. The gap-voltage distribution which was obtained from the CST■ Microwave Studio software simulations of the axial electric field was compared with that from the beam dynamics, and the errors met the requirements within ± 5%. In this paper, the RF design procedure and key results of the APF IH-DTL, which include the main RF characteristics of the cavity, frequency sensitivities of the tuners, and coupling factor of the RF power input coupler are presented.展开更多
Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative dist...Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvi- nylidene fluoride (PVDF) transducer is designed to realize the mode selection of gnided waves, and a single a0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.展开更多
We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitati...We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitation on the crystal we developed previously is used to evaluate the convergent SAW field instead of the prevalent scalar angular spectrum used in optics. The theoretical results show that the anisotropy of a medium has great impact on the focusing properties of the acoustic beams, such as focal length and symmetrical distributions near the focus. A dark field method is used in experiment to observe the focusing of the SAW tield optically. Although the convergent phenomena of SAW field on the anisotropic media or piezoelectric crystals are very complicated, the experimental data are in agreement with those from the rigorous theory.展开更多
基金Project supported by the Chinese Ministry of Science and Technology Projects(Grant Nos.2012AA050304 and Y0GZ124S01)the National Natural Science Foundation of China(Grant Nos.11104319,11274346,51202285,51402347,and 51172268)the Fund of the Solar Energy Action Plan from the Chinese Academy of Sciences(Grant Nos.Y3ZR044001 and Y2YF014001)
文摘The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional(2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk,(such as 1 ms-2 ms), its open-circuit voltage V oc almost remains unchanged, and the short-circuit current density J sc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk(for instance, 〈 500 μs) wafer or the wafer contaminated during device processing, the V oc increases monotonically but the J sc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in J sc.
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.
基金supported by the Intergovernmental International Cooperation of the National Key R&D Program of China(2022YFE0105300)the National Natural Science Foundation of China(21790374, 22276130, 22176139, 21825601)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.
基金Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11274346, 51202285, 61234005, 51172268 and 51402347), the Solar Energy Action Plan of the Chinese Academy of Sciences (Grant Nos. Y1YT064001, Y1YF034001 and Y2YF014001), and Sci. & Tech. Commission Project of Beijing Municipality (Grant No. Z 151100003515003).
文摘Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-HJ solar cell. In this paper, detailed numerical simulations have been performed to investigate the potential of front surface field (FSF) offered by stack of n-type doped and intrinsic amorphous silicon (a-Si) layers on the front surface of IBC-HJ solar cells. Simulations results clearly indicate that the electric field of FSF should be strong enough to repel minority carries and cumulate major carriers near the front surface. However, the overstrong electric field tends to drive electrons into a-Si layer, leading to severe recombination loss. The n-type doped amorphous silicon (n-a-Si) layer has been optimized in terms of doping level and thickness. The optimized intrinsic amorphous silicon (i-a-Si) layer should be as thin as possible with an energy band gap (Es) larger than 1.4 eV. In addition, the simulations concerning interface defects strongly suggest that FSF is essential when the front surface is not passivated perfectly. Without FSF, the IBC-HJ solar cells may become more sensitive to interface defect density.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金supported by the National Natural Science Foundation of China(Nos.60871073 and 61201075)China Postdoctoral Science Foundation(No.2012M511507)
文摘We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor improves more significantly detection sensitivity than does a sensor with sandwich configurations.
文摘This paper presents a development of a low-cost miniature humidity sensor with an interdigitated aluminium electrode connected in parallel on quartz substrate.Interdigitated capacitive device has been fabricated using the photolithography method.The aluminium electrode was covered with sensitive film of a nanoporous thin film of γ-Al_(2)O_(3) made from novel solgel technique.Nanostructured thin film offers very high surface to volume ratio with distribution of micro pores for moisture detection.Pore morphologies of the film have been studied by field emission electron microscope and Xray diffraction methods.Impedance measurement of the miniature capacitive humidity sensor toward relative humidity was investigated at room temperature by Agilent 4294A impedance analyzer(Agilent,Santa Clara,CA,USA).The device exhibits short response and recovery times and good repeatability.
基金the funding support from the National Natural Science Foundation of China (51605449, 51675493 and 51705476)Shanxi “1331 Project” Key Subject Construction (1331KSC)
文摘Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.
基金financial support from the National Natural Science Foundation of China(NSFC)(22109009)the China Postdoctoral Science Foundation(2020M680376)+2 种基金the National Key R&D Program of China(2017YFB1104300)the NSFC(21975027,22035005,52073159)the NSFC-STINT(21911530143)。
文摘Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.
文摘Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.
基金Supported by "985" Funds, Shanghai Jiaotong University, China.
文摘A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFB1500500 and 2018YFB1500200)the National Natural Science Foundation of China(Grant Nos.51602340,51702355,and 61674167)JKW Project,China(Grant No.31512060106)
文摘Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.
文摘In this paper,pure polyaniline (PAN:Emeraldine base (EB) form) films and the mixed LB films of PAN and acetic acid (AA) with various layers were prepared by Langmuir-Blodgett (LB) technique.PAN based gas sensors were fabricated by deposited PAN based LB thin films on the interdigitated electrodes.The gas-sensitivity to NO_2 of PAN based gas sensors with different layers was studied.It is found that pure polyaniline LB films present higher sensitivity,responsivity and reversibility to NO_2 gas compared with polyaniline and acetic acid mixed LB films.The response time of 3-layer and 15-layer pure polyaniline LB films to 20μg/g NO_2 gas is about 10 s and 30 s,respectively.The recovery time of the 15-layer pure polyaniline LB films is close to 5 min.
文摘This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such sensors were used for soil suction measurement. They are microfabricated relative humidity sensors (footprint area 11,000 μm × 22,000 μm) operating based on changes in electrical resistivity detected by a cerium doped silica titania film deposited using a sol-gel technique. Their design required gathering experts in several engineering specialties. The working principle of the sensors is based on water vapour equilibrium between the air in the soil and in the sol-gel pores, due to the contact between the two porous materials. The spacing between interdigitated aluminium electrodes was optimized to improve the sensing properties of the sol-gel. The calibration of the different prototypes was done against compacted clay, varying the spacing between 100 and 700 μm. The sensors were also incorporated in soil samples for suction measurement during wetting and drying paths. They were validated by comparing the readings with those from a water dew point potentiometer. From this study it was possible to determine the optimum electrodes spacing of 200 μm. Error was explained by sol-gel heterogeneity effect and by the resolution of the sensing area provided by the electrodes spacing. When comparing with other sensors operating inside soil specimens in standard laboratorial tests, these sol-gel sensors extend the operation range available with the alternative technologies: while conventional tensiometers measure suction ranges from 0 to 1.8 MPa, our sensors demonstrate good results between 1 to 10 MPa (and higher).
文摘A soft-chemical method has been developed for the synthesis of nano-crystalline powders of silver decamolybdate. Gas sensing characteristics of this composition both in porous pellet and thin film configurations were investigated. The compound Ag6Mo10O33 was found to sense selectively ammonia at 503 K. Above 503 K it has significant cross sensitivity to petroleum gas (PG). Spin coated thin films exhibited selective sensing towards PG.
文摘A microchip interdigitated electrode with a sequential signal generator has been developed for traveling wave dielectrophoresis (twDEP) of biological cell suspensions. The electrode was fabricated on a microscope glass slide and coated with a 0.5 μm thickness of gold through a sputtering technique which was designed for large-scale inductions of cells rather than for individual cells as in previous versions of our device. As designed for a representative cell size of 10 μm, the electrode array was 50 μm in width to allow large numbers (>106) of cells to be processed. The sequential signal generator produces an arbitrary AC quadrature-phase to generate traveling electric field for a microchip interdigitated electrode. Each phase signal can be automatically altered and alternated with the other phases within interval time of 0.01-30 seconds (controlled by programming). We demonstrate the system could be used to estimate the dielectric properties of the yeast Saccharomyces cerivisiae TISTR 5088, the green alga Tetraselmis sp. and human red blood cells (HRBCs) through curve-fitting of dielectro- phoretic velocities and critical frequencies.
基金The Hong Kong Polytechnic University for the funding support(Nos.1-YW1B,G-YBV2,and G-UACC).
文摘Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited.By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs,the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited,forming the first flexible and wearable in-plane embroidery SCs.The electrochemical measurements manifested that the highest specific capacitance was nearly 156.6 mF cm?2(65.72 F g?1)at the current density of 0.6 mA cm?2(0.25 A g?1),with a high energy density of 0.013 mWh cm?2(5.55 Wh kg?1)at a power density of 0.24 mW cm?2(100 W kg?1).As a demonstration,a monogrammed pattern was ingeniously designed and embroidered on the laboratory gown as the wearable in-plane SCs,which showed both decent electrochemical performance and excellent flexibility.
基金supported by the National Key Research and Development Program of China(No.2016YFC0105408)
文摘A compact interdigital H-mode drift-tube linac (IH-DTL) with the alternating-phase-focusing (APF) method, working at 325 MHz was designed for an injector of a proton medical accelerator. When fed in with a proper RF (radio frequency) power, the DTL cavity could establish the corresponding electromagnetic field to accelerate the ‘‘proton bunches’’ from an input energy of 3 MeV to an output energy of 7 MeV successfully, without any additional radial focusing elements. The gap-voltage distribution which was obtained from the CST■ Microwave Studio software simulations of the axial electric field was compared with that from the beam dynamics, and the errors met the requirements within ± 5%. In this paper, the RF design procedure and key results of the APF IH-DTL, which include the main RF characteristics of the cavity, frequency sensitivities of the tuners, and coupling factor of the RF power input coupler are presented.
基金This project is supported by National Natural Science Foundation of China (No. 60404017)Municipal Natural Science Foundation of Beijing, China (No.4052008)Plan of Excellent People Cultivation of Beijing, China (No. 20051D0501506)
文摘Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvi- nylidene fluoride (PVDF) transducer is designed to realize the mode selection of gnided waves, and a single a0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.
基金Supported by the National Natural Science Foundation of China under Grant No 10134020.
文摘We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitation on the crystal we developed previously is used to evaluate the convergent SAW field instead of the prevalent scalar angular spectrum used in optics. The theoretical results show that the anisotropy of a medium has great impact on the focusing properties of the acoustic beams, such as focal length and symmetrical distributions near the focus. A dark field method is used in experiment to observe the focusing of the SAW tield optically. Although the convergent phenomena of SAW field on the anisotropic media or piezoelectric crystals are very complicated, the experimental data are in agreement with those from the rigorous theory.