期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Detecting spatio-temporal urban surface changes using identified temporary coherent scatterers
1
作者 HU Fengming WU Jicang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1304-1317,共14页
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho... Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement. 展开更多
关键词 change detection temporary coherent scatterer multi-temporal interferometric synthetic aperture radar(insar) amplitude analysis
下载PDF
INTERFEROGRAM NOISE REDUCTION ALGORITHM BASE ON MAXIMUM A POSTERIORI ESTIMATE
2
作者 Liu Gang Feng Wensen +1 位作者 Chen Runpu Shao Yunfeng 《Journal of Electronics(China)》 2014年第3期200-207,共8页
Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar(InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simult... Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar(InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simultaneously. To solve the dilemma, a new interferogram noise reduction algorithm based on the Maximum A Posteriori(MAP) estimate is introduced in this paper. The algorithm is solved under the Total Generalized Variation(TGV) minimization assumption, which exploits the phase characteristics up to the second order differentiation. The ideal noise-free phase consisting of piecewise smooth areas is involved in this assumption, which is coincident with the natural terrain. In order to overcome the phase wraparound effect, complex plane filter is utilized in this algorithm. The simulation and real data experiments show the algorithm can reduce the noises effectively and meanwhile preserve the interferogram fringes very well. 展开更多
关键词 interferometric synthetic aperture radar(insar) Interferograms noise redunction Maximum A Posteriori(MAP) Total Generalized Variation(TGV)
下载PDF
The 2023 M_(w)6.8 Adassil Earthquake(Chichaoua,Morocco)on a steep reverse fault in the deep crust and its geodynamic implications
3
作者 Billel Touati WangWang Gu +6 位作者 SiDao Ni Risheng Chu MinHan Sheng QingJie Xue Fouzi Bellalem Said Maouche Habibi Yahyaoui 《Earth and Planetary Physics》 EI CAS 2024年第3期522-534,共13页
The Mw 6.8 Adassil earthquake that occurred in the High Atlas on September 8,2023,was a catastrophic event that provided a rare opportunity to study the mechanics of deep crustal seismicity.This research aimed to deci... The Mw 6.8 Adassil earthquake that occurred in the High Atlas on September 8,2023,was a catastrophic event that provided a rare opportunity to study the mechanics of deep crustal seismicity.This research aimed to decipher the rupture characteristics of the Adassil earthquake by analyzing teleseismic waveform data in conjunction with interferometric synthetic aperture radar(InSAR)observations from both ascending and descending orbits.Our analysis revealed a reverse fault mechanism with a centroid depth of approximately 28 km,exceeding the typical range for crustal earthquakes.This result suggests the presence of cooler temperatures in the lower crust,which facilitates the accumulation of tectonic stress.The earthquake exhibited a steep reverse mechanism,dipping at 70°,accompanied by minor strike-slip motion.Within the geotectonic framework of the High Atlas,known for its volcanic legacy and resulting thermal irregularities,we investigated the potential contributions of these factors to the initiation of the Adassil earthquake.Deep seismicity within the lower crust,away from plate boundaries,calls for extensive research to elucidate its implications for regional seismic hazard assessment.Our findings highlight the critical importance of studying and preparing for significant seismic events in similar geological settings,which would provide valuable insights into regional seismic hazard assessments and geodynamic paradigms. 展开更多
关键词 Adassil earthquake seismogenic fault source depth interferometric synthetic aperture radar(insar) seismic waveform joint inversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部