期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Sharp convergence rates of stochastic approximation for degenerate roots
1
作者 方海涛 陈翰馥 《Science China(Technological Sciences)》 SCIE EI CAS 1998年第4期383-392,共10页
Sharp convergence rates of stochastic approximation algorithms are given for the case where the derivative of the unknown regression function at the sought-for root is zero. The convergence rates obtained are sharp fo... Sharp convergence rates of stochastic approximation algorithms are given for the case where the derivative of the unknown regression function at the sought-for root is zero. The convergence rates obtained are sharp for the general step size used in the algorithms in contrast to the previous work where they are not sharp for slowly decreasing step sizes; all possible limit points are found for the case where the first matrix coefficient in the expansion of the regression function is normal; and the estimation upper bound is shown to be achieved for the multi-dimensional case in contrast to the previous work where only the one-dimensional result is proved. 展开更多
关键词 stochastic approximation convergence rate.
原文传递
Stochastic Approximation Method for Fixed Point Problems 被引量:1
2
作者 Ya. I. Alber C. E. Chidume Jinlu Li 《Applied Mathematics》 2012年第12期2123-2132,共10页
We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We ... We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems. 展开更多
关键词 HILBERT Spaces stochastic approximation Algorithm Weakly Contractive OPERATORS NONEXPANSIVE OPERATORS Fixed Points convergence in Mean Square convergence ALMOST Sure (a.s.) Nonasymptotic Estimates of convergence rate
下载PDF
High Order Approximation of LR Fuzzy Interval
3
作者 Zengfeng Tian 《通讯和计算机(中英文版)》 2010年第7期16-19,共4页
关键词 模糊区间 模糊集理论 模糊智能系统 逼近理论 区间序列 收敛速度 梯度法 紧凑型
下载PDF
一类快速收敛的渐进迭代逼近方法
4
作者 胡倩倩 梁如意 王国瑾 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第12期1900-1909,共10页
渐进迭代逼近(PIA)是一种用于数据拟合的经典几何迭代方法,其操作简单,表达显式.针对经典PIA算法存在收敛速度慢的问题,将逆矩阵的具有高阶收敛的迭代算法与经典PIA方法融合,提出一类单步非定常的加速PIA算法.首先,对给定数据点用均匀... 渐进迭代逼近(PIA)是一种用于数据拟合的经典几何迭代方法,其操作简单,表达显式.针对经典PIA算法存在收敛速度慢的问题,将逆矩阵的具有高阶收敛的迭代算法与经典PIA方法融合,提出一类单步非定常的加速PIA算法.首先,对给定数据点用均匀或累加弦长法进行参数化;然后,用加速PIA算法调整控制点生成拟合曲线(曲面)序列,从理论上保证了生成的曲线(曲面)序列的极限插值原始数据点.在规则曲线曲面,散乱数据点以及加噪声散乱数据点的拟合实验结果表明,在相同终止误差条件下,相比经典PIA算法,所提加速PIA算法需要的迭代次数平均减少84.75%,运算时间平均减少65.53%. 展开更多
关键词 渐进迭代逼近 混合曲线曲面 数据拟合 收敛速度 全正基
下载PDF
随机二阶锥规划问题的统计推断
5
作者 林爽 李思颖 张杰 《大连工业大学学报》 CAS 北大核心 2023年第3期226-230,共5页
随机二阶锥规划问题是确定型二阶锥规划问题的扩展形式,在诸多领域有重要的应用。本文研究了一类随机二阶锥规划问题的统计推断,对一类随机二阶锥规划问题的样本均值近似问题的可行域的收敛速度和样本规模的大小进行了阐述,得出了随机... 随机二阶锥规划问题是确定型二阶锥规划问题的扩展形式,在诸多领域有重要的应用。本文研究了一类随机二阶锥规划问题的统计推断,对一类随机二阶锥规划问题的样本均值近似问题的可行域的收敛速度和样本规模的大小进行了阐述,得出了随机二阶锥规划问题的样本均值近似问题的最优值的收敛速度和样本规模,得到的结果为进一步建立随机二阶锥规划问题的最优值的置信区间提供理论保证。 展开更多
关键词 随机二阶锥规划 样本均值近似 收敛速度 样本规模
下载PDF
区间截断情况下,分布函数估计及其收敛速度 被引量:1
6
作者 丁邦俊 《应用概率统计》 CSCD 北大核心 2008年第5期531-540,共10页
首先将文[11]的结论推广到任意k点均匀分布(k≥3),然后用k点均匀分布的累积分布函数去逼近连续总体的分布函数,在适当的条件下,证明了用区间数据估计出的分布函数收敛速度为O(n)-2/9.
关键词 区间数据 随机逼近 收敛速度.
下载PDF
水声MIMO-OFDM通信中的空频迭代信道估计与均衡 被引量:3
7
作者 张玲玲 黄建国 +1 位作者 韩晶 张群飞 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第2期208-214,共7页
在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel ... 在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel Estimation and Equalization,SFICEE)方法。该方法通过载波间的空频正交性进行各收发阵元对的信道估计,并通过空频均衡获得符号初始估计,迭代更新信道估计,而后通过符号后验软信息反馈进行迭代空频软均衡。仿真结果表明,当误码率为10^(-3)时,文中所提出的SFICEE方法经过二次迭代与STBC方法相比具有4.8 d B的性能增益,相对于SFBC方法有2.8 d B的性能提升。当输入信噪比相同时,文中所提出方法的星座图更加收敛,可以更好地降低水下通信系统的误码率。 展开更多
关键词 水下通信 多输入多输出 正交频分复用 空频软均衡 迭代信道估计
下载PDF
A STOCHASTIC NEWTON METHOD FOR NONLINEAR EQUATIONS
8
作者 Jiani Wang Xiao Wang Liwei Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1192-1221,共30页
In this paper,we study a stochastic Newton method for nonlinear equations,whose exact function information is difficult to obtain while only stochastic approximations are available.At each iteration of the proposed al... In this paper,we study a stochastic Newton method for nonlinear equations,whose exact function information is difficult to obtain while only stochastic approximations are available.At each iteration of the proposed algorithm,an inexact Newton step is first computed based on stochastic zeroth-and first-order oracles.To encourage the possible reduction of the optimality error,we then take the unit step size if it is acceptable by an inexact Armijo line search condition.Otherwise,a small step size will be taken to help induce desired good properties.Then we investigate convergence properties of the proposed algorithm and obtain the almost sure global convergence under certain conditions.We also explore the computational complexities to find an approximate solution in terms of calls to stochastic zeroth-and first-order oracles,when the proposed algorithm returns a randomly chosen output.Furthermore,we analyze the local convergence properties of the algorithm and establish the local convergence rate in high probability.At last we present preliminary numerical tests and the results demonstrate the promising performances of the proposed algorithm. 展开更多
关键词 Nonlinear equations stochastic approximation Line search Global convergence Computational complexity Local convergence rate
原文传递
A Symmetric Linearized Alternating Direction Method of Multipliers for a Class of Stochastic Optimization Problems
9
作者 Jia HU Qimin HU 《Journal of Systems Science and Information》 CSCD 2023年第1期58-77,共20页
Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the s... Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the stochastic setting for solving some stochastic optimization problems,inspired by the structural risk minimization principle.In this paper,we consider a stochastic variant of symmetric ADMM,named symmetric stochastic linearized ADMM(SSL-ADMM).In particular,using the framework of variational inequality,we analyze the convergence properties of SSL-ADMM.Moreover,we show that,with high probability,SSL-ADMM has O((ln N)·N^(-1/2))constraint violation bound and objective error bound for convex problems,and has O((ln N)^(2)·N^(-1))constraint violation bound and objective error bound for strongly convex problems,where N is the iteration number.Symmetric ADMM can improve the algorithmic performance compared to classical ADMM,numerical experiments for statistical machine learning show that such an improvement is also present in the stochastic setting. 展开更多
关键词 alternating direction method of multipliers stochastic approximation expected convergence rate and high probability bound convex optimization machine learning
原文传递
Convergence rates of MLE in a partly linear model
10
作者 薛宏旗 《Science China Mathematics》 SCIE 2002年第11期1398-1407,共10页
This paper considers the estimation for a partly linear model with case 1 interval censored data.We assume that the error distribution belongs to a known family of scale distributions with an unknown scaleparameter. T... This paper considers the estimation for a partly linear model with case 1 interval censored data.We assume that the error distribution belongs to a known family of scale distributions with an unknown scaleparameter. The sieve maximum likelihood estimator (MLE) for the model's parameter is shown to be stronglyconsistent, and the convergence rate of the estimator is obtained and discussed. 展开更多
关键词 partly linear model case 1 interval censored data SIEVE MLE STRONG consistency convergence rate.
原文传递
Discrete Approximation and Convergence Analysis for a Class of Decision-Dependent Two-Stage Stochastic Linear Programs
11
作者 Jie Jiang Zhi-Ping Chen 《Journal of the Operations Research Society of China》 EI 2024年第3期649-679,共31页
Customary stochastic programming with recourse assumes that the probability distribution of random parameters is independent of decision variables.Recent studies demonstrated that stochastic programming models with en... Customary stochastic programming with recourse assumes that the probability distribution of random parameters is independent of decision variables.Recent studies demonstrated that stochastic programming models with endogenous uncertainty can better reflect many real-world activities and applications accompanying with decision-dependent uncertainty.In this paper,we concentrate on a class of decision-dependent two-stage stochastic programs(DTSPs)and investigate their discrete approximation.To develop the discrete approximation methods for DTSPs,we first derive the quantitative stability results for DTSPs.Based on the stability conclusion,we examine two discretization schemes when the support set of random variables is bounded,and give the rates of convergence for the optimal value and optimal solution set of the discrete approximation problem to those of the original problem.Then we extend the proposed approaches to the general situation with an unbounded support set by using the truncating technique.As an illustration of our discretization schemes,we reformulate the discretization problems under specific structures of the decision-dependent distribution.Finally,an application and numerical results are presented to demonstrate our theoretical results. 展开更多
关键词 stochastic programming Decision-dependence Discrete approximation Stability convergence rate
原文传递
利用区间删失数据的分布函数估计及其收敛速度 被引量:2
12
作者 丁邦俊 《系统科学与数学》 CSCD 北大核心 2008年第6期641-648,共8页
讨论任意m点均匀分布(m≥3)的情况,用m点均匀分布的累积分布函数去逼近连续总体的分布函数,在适当的条件下,证明了用区间删失数据估计分布函数具有收敛速度O(n)^(-(2/9)).
关键词 区间数据 随机逼近 收敛速度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部