In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr...In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (...High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.展开更多
文摘In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
文摘High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.