Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to dedu...Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.展开更多
Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational ...Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.展开更多
Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induce...Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.展开更多
The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model...The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.展开更多
在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition met...在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。展开更多
An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied t...An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.展开更多
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff...The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.展开更多
A family of variational principles (VP) has been developed for the unsteady inverse problem of the second type I B. It opens new ways for the inverse shape design of unsteady airfoils and can serve as key basis of m...A family of variational principles (VP) has been developed for the unsteady inverse problem of the second type I B. It opens new ways for the inverse shape design of unsteady airfoils and can serve as key basis of multipoint inverse shape design of steady airfoils and cascades.展开更多
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
We present a method for identifying the flexural rigidity and external loads acting on a beam using the finite-element method. We used mixed beam elements possessing transverse deflection and the bending moment as the...We present a method for identifying the flexural rigidity and external loads acting on a beam using the finite-element method. We used mixed beam elements possessing transverse deflection and the bending moment as the primary degrees of freedom. The first step is to determine the bending moment from the transverse deflection and boundary conditions. The second step is to substitute the bending moment into the final equations with respect to the unknown parameters (flexural rigidity or external load). The final step solves the resulting system of equations. We apply this method to some inverse beam problems and provide an accurate estimation. Several numerical examples are performed and show that present method gives excellent results for identifying bending stiffness and distributed load of beam.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
文摘Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.
文摘Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.
基金National Natural Science Foundation of China (12002075)National Key Research and Development Project (2021YFB3300601)Natural Science Foundation of Liaoning Province in China (2021-MS-128).
文摘Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.
文摘The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.
文摘在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。
基金support from the South China University of Technology for the PhD short-term visiting project。
文摘An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.
文摘The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.
文摘A family of variational principles (VP) has been developed for the unsteady inverse problem of the second type I B. It opens new ways for the inverse shape design of unsteady airfoils and can serve as key basis of multipoint inverse shape design of steady airfoils and cascades.
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.
文摘We present a method for identifying the flexural rigidity and external loads acting on a beam using the finite-element method. We used mixed beam elements possessing transverse deflection and the bending moment as the primary degrees of freedom. The first step is to determine the bending moment from the transverse deflection and boundary conditions. The second step is to substitute the bending moment into the final equations with respect to the unknown parameters (flexural rigidity or external load). The final step solves the resulting system of equations. We apply this method to some inverse beam problems and provide an accurate estimation. Several numerical examples are performed and show that present method gives excellent results for identifying bending stiffness and distributed load of beam.