The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast...The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially availa...Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.展开更多
This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral muco...This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral mucosal changes,and swelling of the extremities.This editorial aims to delve into the intricate relationship between KD and abdominal pain,drawing insights from recent research findings to provide a comprehensive understanding and potential avenues for future investigation.展开更多
The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundar...The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.展开更多
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat...High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir...A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.展开更多
Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases a...Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.展开更多
The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of...The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.展开更多
A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional ...A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but...BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-s...Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-speed railway joint tests by incorporating the concept of hazardous events.Design/methodology/approach–Aiming at ensuring the safety of high-speed railway combined inspections and trials,this paper starts from the dual prevention mechanism.It introduces the concept of threatening events,defines them and analyzes the differences between threatening events and railway accidents.The paper also proposes a cause model for threatening events in high-speed railway combined inspections and trials,based on three types of hazard sources.Furthermore,it conducts research on the control strategies for these threatening events.Findings–The research on safety control technology for high-speed railway combined operation and testing,based on the analysis of threatened events,offers a new perspective for safety management in these operations.It also provides theoretical and practical support for the transition from passive prevention to active risk pre-control,which holds significant theoretical and practical value.Originality/value–The innovation mainly includes the following three aspects:(1)Building on the traditional dual prevention mechanism,which includes risk hierarchical management and control as well as hidden danger investigation and management,a triple prevention mechanism is proposed.This new mechanism adds the management of threatening events as the third line of defense.The aim is to more comprehensively identify and address potential security risks,thereby enhancing the efficiency and effectiveness of security management.(2)In this paper,the definition of a railway threatening event is clarified,and the causative model of a high-speed railway threatening event based on three kinds of danger sources is proposed.(3)This paper puts forward the control strategy of the high-speed railway combined operation and trial,which includes five key links:identification,reporting,analysis,rectification and feedback,which provides a new perspective for the safety management of the high-speed railway combined operation and trial and has important theoretical and application value.展开更多
[Objectives]The paper was to ascertain the prevalence of diseases and pests in a range of citrus nurseries situated in Guangdong Province and its neighboring provinces.[Methods]Citrus diseases and pests were systemati...[Objectives]The paper was to ascertain the prevalence of diseases and pests in a range of citrus nurseries situated in Guangdong Province and its neighboring provinces.[Methods]Citrus diseases and pests were systematically investigated,and citrus leaf samples were randomly collected from 15 citrus nurseries across 8 regions in Guangdong Province and its neighboring provinces.Quantitative polymerase chain reaction(qPCR)and reverse transcription polymerase chain reaction(RT-PCR)techniques were employed to detect diseases in the collected samples.Additionally,root and substrate samples were obtained,and root-knot nematodes were isolated using the Baermann funnel method.[Results]The positive detection rate of citrus huanglongbing(HLB)was recorded at 3%,indicating an increase in attention towards this disease compared to 2013.Additionally,the positive detection rate for citrus bacterial canker disease(CBCD)was found to be 16.5%.It was observed that the majority of nurseries with positive samples employed open field rearing practices without the use of mesh chambers,and the primary source of scions was self-propagation.The detection rate of citrus tristeza virus(CTV)was found to be the highest,with a positive detection rate of 63%,and the prevalence in disease-bearing nurseries reached as high as 90%.In comparison to 2013,there had been no improvement in the condition of seedlings affected by CTV.The positive detection rate of citrus yellow vein clearing virus(CYVCV)was found to be 38%,with 70%of the surveyed nurseries exhibiting the disease.The citrus varieties identified as carriers of the disease included‘Qicheng’,‘Shatangju’,‘Wogan’,and‘Gonggan’.Nematodes were isolated from the matrix and roots of seedlings grown in both container and open field environments.The susceptibility of container seedlings to nematodes was found to be 36.4%,while the susceptibility of open field seedlings was 38.6%.Statistical analysis indicated no significant difference in susceptibility between the two groups.[Conclusions]The disease detection rates associated with various seedling rearing methods and citrus varieties exhibited notable variability.Open field seedlings without the protection of mesh chambers demonstrated a higher susceptibility to disease.Additionally,the types of infectious diseases varied among the different citrus varieties.展开更多
To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit att...To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.展开更多
Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance o...Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance of these activities mandatory for any experiment and professional working in this area. Assigning the severity of a research experiment is the result of an analysis of records of observations of the animal’s behavior, and clinical signs. The aim of this study was to describe the importance of carrying out a severity assessment associated with clinical and behavioral monitoring of rodents and rabbits during experimentation to maintain the welfare of these animals undergoing scientific research. Methods: The literature search was carried out using the following terms: “Monitoring”;“Humane endpoints”;“Animal welfare”, “Rodents”;“Rabbits”, and as connectors “and”;“or”, in the following databases: PubMed;LILACS/BIREME and SciELO. Results: A total of 987 articles were identified in the databases, and 20 of these studies were included in this review. Conclusions: Humane endpoint protocols and procedure severity tables are of the utmost importance, both from an ethical point and to refine the results of research conducted on laboratory animals. They should be drawn up jointly by the teams responsible for the project and the maintenance of the animals during the research period, and the data obtained should be published so that the scientific community can have access to it, helping to disseminate these practices, as well as helping to draw up new procedures. Monitoring and evaluating the welfare and clinical condition of animals undergoing scientific research procedures is the responsibility of the professors, researchers, veterinarians, and animal facility coordinators. The Ethics Committee on the Use of Animals must monitor all the activities conducted with the animals, by inspecting the experimental procedures and the physical environment of the laboratory animal facility where the animals are housed.展开更多
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us...Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374325 and 11427809
文摘The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030007).
文摘Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.
基金Supported by The Hubei Pediatric Alliance Medical Research Project,No.HPAMRP202117。
文摘This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral mucosal changes,and swelling of the extremities.This editorial aims to delve into the intricate relationship between KD and abdominal pain,drawing insights from recent research findings to provide a comprehensive understanding and potential avenues for future investigation.
基金The research work described herein was funded by the National Nature Science Foundation of China(Grant No.41877213).This financial support is gratefully acknowledged.
文摘The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.
基金financed by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2023K022)the Natural Science Foundation of Hubei Province(No.2022CFA011).
文摘High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
基金Natural Science Foundation of Hubei Province of China for Distinguished Young Scholars (2023AFA099)Natural Science Foundation of Hubei Province of China for Key Projects (Innovation Group) (2023AFA030)National Natural Science Foundation of China (52178471)。
文摘A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.
基金supported by the National Key Research and Development Program[2022YFC2302700].
文摘Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.
基金Financial support from the National Natural Science Foundation of China(22075016 and 22103057)Fundamental Research Funds for the Central Universities(FRF-TP-20-020A3 and QNXM20220060)+1 种基金Interdisciplinary Research Project for Young Teachers of USTB(FRF-IDRY-21-011)111 Project(B170003 and B12015)
文摘The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.
基金work is supported by the Fundamental Research Funds for the Central Universities(Grant No.B230205021)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(GrantNo.KYCX22_0592).The financial supports are gratefully acknowl-edged.
文摘A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
文摘BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-speed railway joint tests by incorporating the concept of hazardous events.Design/methodology/approach–Aiming at ensuring the safety of high-speed railway combined inspections and trials,this paper starts from the dual prevention mechanism.It introduces the concept of threatening events,defines them and analyzes the differences between threatening events and railway accidents.The paper also proposes a cause model for threatening events in high-speed railway combined inspections and trials,based on three types of hazard sources.Furthermore,it conducts research on the control strategies for these threatening events.Findings–The research on safety control technology for high-speed railway combined operation and testing,based on the analysis of threatened events,offers a new perspective for safety management in these operations.It also provides theoretical and practical support for the transition from passive prevention to active risk pre-control,which holds significant theoretical and practical value.Originality/value–The innovation mainly includes the following three aspects:(1)Building on the traditional dual prevention mechanism,which includes risk hierarchical management and control as well as hidden danger investigation and management,a triple prevention mechanism is proposed.This new mechanism adds the management of threatening events as the third line of defense.The aim is to more comprehensively identify and address potential security risks,thereby enhancing the efficiency and effectiveness of security management.(2)In this paper,the definition of a railway threatening event is clarified,and the causative model of a high-speed railway threatening event based on three kinds of danger sources is proposed.(3)This paper puts forward the control strategy of the high-speed railway combined operation and trial,which includes five key links:identification,reporting,analysis,rectification and feedback,which provides a new perspective for the safety management of the high-speed railway combined operation and trial and has important theoretical and application value.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-26)Science and Technology Innovation Guidance Project of Zhaoqing City(2023040308008)+1 种基金Undergraduate Innovation and Entrepreneurship Training Program of Guangdong Province(S202310580050)Project of High-quality Development in Hundred Counties,Thousands Towns and Ten Thousand Villages.
文摘[Objectives]The paper was to ascertain the prevalence of diseases and pests in a range of citrus nurseries situated in Guangdong Province and its neighboring provinces.[Methods]Citrus diseases and pests were systematically investigated,and citrus leaf samples were randomly collected from 15 citrus nurseries across 8 regions in Guangdong Province and its neighboring provinces.Quantitative polymerase chain reaction(qPCR)and reverse transcription polymerase chain reaction(RT-PCR)techniques were employed to detect diseases in the collected samples.Additionally,root and substrate samples were obtained,and root-knot nematodes were isolated using the Baermann funnel method.[Results]The positive detection rate of citrus huanglongbing(HLB)was recorded at 3%,indicating an increase in attention towards this disease compared to 2013.Additionally,the positive detection rate for citrus bacterial canker disease(CBCD)was found to be 16.5%.It was observed that the majority of nurseries with positive samples employed open field rearing practices without the use of mesh chambers,and the primary source of scions was self-propagation.The detection rate of citrus tristeza virus(CTV)was found to be the highest,with a positive detection rate of 63%,and the prevalence in disease-bearing nurseries reached as high as 90%.In comparison to 2013,there had been no improvement in the condition of seedlings affected by CTV.The positive detection rate of citrus yellow vein clearing virus(CYVCV)was found to be 38%,with 70%of the surveyed nurseries exhibiting the disease.The citrus varieties identified as carriers of the disease included‘Qicheng’,‘Shatangju’,‘Wogan’,and‘Gonggan’.Nematodes were isolated from the matrix and roots of seedlings grown in both container and open field environments.The susceptibility of container seedlings to nematodes was found to be 36.4%,while the susceptibility of open field seedlings was 38.6%.Statistical analysis indicated no significant difference in susceptibility between the two groups.[Conclusions]The disease detection rates associated with various seedling rearing methods and citrus varieties exhibited notable variability.Open field seedlings without the protection of mesh chambers demonstrated a higher susceptibility to disease.Additionally,the types of infectious diseases varied among the different citrus varieties.
基金Supported by Youth Project of Natural Science Foundation of Anhui Province(2008085QC135)Postdoctoral Workstation Project of West Anhui University(WXBSH2020003)+4 种基金Key Program of Natural Science Research Project for Anhui Universities(KJ2021A0954)Forestry Carbon Sequestration Self-funded Science and Technology Project of Anhui Province(LJH[2022]267)Subject of Lu'an Forestry Bureau(0045021093)School-level Quality Engineering Project of West Anhui University(wxxy2021017)Provincial Quality Engineering Project of West Anhui University(2022jyxm1765).
文摘To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.
文摘Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance of these activities mandatory for any experiment and professional working in this area. Assigning the severity of a research experiment is the result of an analysis of records of observations of the animal’s behavior, and clinical signs. The aim of this study was to describe the importance of carrying out a severity assessment associated with clinical and behavioral monitoring of rodents and rabbits during experimentation to maintain the welfare of these animals undergoing scientific research. Methods: The literature search was carried out using the following terms: “Monitoring”;“Humane endpoints”;“Animal welfare”, “Rodents”;“Rabbits”, and as connectors “and”;“or”, in the following databases: PubMed;LILACS/BIREME and SciELO. Results: A total of 987 articles were identified in the databases, and 20 of these studies were included in this review. Conclusions: Humane endpoint protocols and procedure severity tables are of the utmost importance, both from an ethical point and to refine the results of research conducted on laboratory animals. They should be drawn up jointly by the teams responsible for the project and the maintenance of the animals during the research period, and the data obtained should be published so that the scientific community can have access to it, helping to disseminate these practices, as well as helping to draw up new procedures. Monitoring and evaluating the welfare and clinical condition of animals undergoing scientific research procedures is the responsibility of the professors, researchers, veterinarians, and animal facility coordinators. The Ethics Committee on the Use of Animals must monitor all the activities conducted with the animals, by inspecting the experimental procedures and the physical environment of the laboratory animal facility where the animals are housed.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23098).
文摘Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.