Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-di...Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.展开更多
In this paper, we present the general exact solutions of such coupled system of matrix fractional differential equations for diagonal unknown matrices in Caputo sense by using vector extraction operators and Hadamard ...In this paper, we present the general exact solutions of such coupled system of matrix fractional differential equations for diagonal unknown matrices in Caputo sense by using vector extraction operators and Hadamard product. Some illustrated examples are also given to show our new approach.展开更多
Given a suitable ordering of the positive root system associated with a semisimple Lie algebra,there exists a natural correspondence between Verma modules and related polynomial algebras. With this, the Lie algebra ac...Given a suitable ordering of the positive root system associated with a semisimple Lie algebra,there exists a natural correspondence between Verma modules and related polynomial algebras. With this, the Lie algebra action on a Verma module can be interpreted as a differential operator action on polynomials, and thus on the corresponding truncated formal power series. We prove that the space of truncated formal power series gives a differential-operator representation of the Weyl group W. We also introduce a system of partial differential equations to investigate singular vectors in the Verma module. It is shown that the solution space of the system in the space of truncated formal power series is the span of {w(1) | w ∈ W }. Those w(1) that are polynomials correspond to singular vectors in the Verma module. This elementary approach by partial differential equations also gives a new proof of the well-known BGG-Verma theorem.展开更多
The problem of J-selfadjointness of the product of two nth-order J-symmetric operators on [a,b] is studied. We give a condition to ensure that the product operator is a J-selfadjoint extension.
基金Supported by the National Natural Science Foundation of China(61333010,61134007and 21276078)“Shu Guang”project of Shanghai Municipal Education Commission,the Research Talents Startup Foundation of Jiangsu University(15JDG139)China Postdoctoral Science Foundation(2016M591783)
文摘Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.
文摘In this paper, we present the general exact solutions of such coupled system of matrix fractional differential equations for diagonal unknown matrices in Caputo sense by using vector extraction operators and Hadamard product. Some illustrated examples are also given to show our new approach.
基金supported by National Natural Science Foundation of China(Grant No.11326059)
文摘Given a suitable ordering of the positive root system associated with a semisimple Lie algebra,there exists a natural correspondence between Verma modules and related polynomial algebras. With this, the Lie algebra action on a Verma module can be interpreted as a differential operator action on polynomials, and thus on the corresponding truncated formal power series. We prove that the space of truncated formal power series gives a differential-operator representation of the Weyl group W. We also introduce a system of partial differential equations to investigate singular vectors in the Verma module. It is shown that the solution space of the system in the space of truncated formal power series is the span of {w(1) | w ∈ W }. Those w(1) that are polynomials correspond to singular vectors in the Verma module. This elementary approach by partial differential equations also gives a new proof of the well-known BGG-Verma theorem.
基金Supported by the National Natural Science Foundation of China (10861008)the Doctor Discipline Fund of the Minitry of Education of China (20040126008)
文摘The problem of J-selfadjointness of the product of two nth-order J-symmetric operators on [a,b] is studied. We give a condition to ensure that the product operator is a J-selfadjoint extension.