期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling 被引量:1
1
作者 Aamir Hamid Khan Yizan Ma +9 位作者 Yuanlong Wu Adnan Akbar Muhammad Shaban Abid Ullah Jinwu Deng Abdul Saboor Khan Huabin Chi Longfu Zhu Xianlong Zhang Ling Min 《The Crop Journal》 SCIE CSCD 2023年第1期33-45,共13页
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi... Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT. 展开更多
关键词 Cotton(Gossypium hirsutum) jasmonic acid Allene oxide cyclase 2 ROS CRISPR/Cas9 High-temperature stress
下载PDF
Jasmonic acid-mediated stress responses share the molecular mechanism underlying male sterility induced by deficiency of ZmMs33 in maize
2
作者 Ziwen Li Shuangshuang Liu +7 位作者 Taotao Zhu Jing Wang Meng Sun Xueli An Xun Wei Cuimei Liu Jinfang Chu Xiangyuan Wan 《The Crop Journal》 SCIE CSCD 2023年第4期1115-1127,共13页
Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and devel... Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling. 展开更多
关键词 ZmMs33/ZmGPAT6 jasmonic acid Phytohormone homeostasis Male sterility Stress response
下载PDF
Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat 被引量:5
3
作者 Xiao Wang Qing Li +5 位作者 Jingjing Xie Mei Huang Jian Cai Qin Zhou Tingbo Dai Dong Jiang 《The Crop Journal》 SCIE CSCD 2021年第1期120-132,共13页
Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the g... Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the genes encoding the biosynthesis and metabolism of abscisic acid(ABA)and jasmonic acid(JA),as well as genes involved in the ABA and JA signaling pathways were up-regulated by drought priming.Endogenous concentrations of JA and ABA increased following drought priming.The interplay between JA and ABA in plant responses to drought priming was further investigated using inhibitors of ABA and JA biosynthesis.Application of fluridone(FLU)or nordihydroguaiaretic acid(NDGA)to primed plants resulted in lower chlorophyll-fluorescence parameters and activities of superoxide dismutase and glutathione reductase,and higher cell membrane damage,compared to primed plants(PD)under drought stress.NDGA+ABA,but not FLU+JA,restored priming-induced tolerance,as indicated by a finding of no significant difference from PD under drought stress.Under drought priming,NDGA induced the suppression of ABA accumulation,while FLU did not affect JA accumulation.These results were consistent with the expression of genes involved in the biosynthesis of ABA and JA.They suggest that ABA and JA are required for priming-induced drought tolerance in wheat,with JA acting upstream of ABA. 展开更多
关键词 WHEAT Drought priming Abscisic acid jasmonic acid Antioxidant activity
下载PDF
Effect of Jasmonic Acid on Photosynthetic Pigments and Stress Markers in <i>Cajanus cajan</i>(L.) Millsp. Seedlings under Copper Stress 被引量:2
4
作者 Sharma Poonam Harpreet Kaur Sirhindi Geetika 《American Journal of Plant Sciences》 2013年第4期817-823,共7页
Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transducti... Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+. 展开更多
关键词 jasmonic Acid Copper Sulphate Lipid PEROXIDATION Superoxide DISMUTASE GUAIACOL PEROXIDASE Total Chlorophyll Carotenoids
下载PDF
The laccase gene Gh Lac1 modulates fiber initiation and elongation by coordinating jasmonic acid and flavonoid metabolism 被引量:1
5
作者 Qin Hu Shenghua Xiao +4 位作者 Qianqian Guan Lili Tu Feng Sheng Xuezhu Du Xianlong Zhang 《The Crop Journal》 SCIE CAS CSCD 2020年第4期522-533,共12页
Cotton fibers are single cells originating in the epidermis of cotton ovules,and serve as the largest natural fiber source for the textile industry.In theory,all epidermal cells have the potential to develop into fibe... Cotton fibers are single cells originating in the epidermis of cotton ovules,and serve as the largest natural fiber source for the textile industry.In theory,all epidermal cells have the potential to develop into fibers,but only 15%–25%of epidermis cells develop into commercially viable lint fibers.We previously showed that Gh Lac1 participates in cotton defense against biotic stress.Here we report that Gh Lac1 also has a role in cotton fiber development.Gh Lac1 RNAi lines in cotton showed increased differentiation of fiber initials from epidermis and shortened fiber length,resulting in unchanged lint percentage.Suppression of Gh Lac1 expression led to constitutively hyperaccumulated jasmonic acid(JA)and flavonoids in ovules and fiber cells.In vitro ovule culture experiments confirmed the distinct roles of JA and flavonoids in fiber initiation and elongation,and showed that fiber development is spatially regulated by these chemicals:the increased fiber initiation in Gh Lac1 RNAi lines is caused by hyperaccumulated JA and rutin content during the fiber initiation stage and shortened fiber length is caused by constitutively increased JA and naringenin content during the fiber elongation stage. 展开更多
关键词 COTTON GhLac1 Fiber development jasmonic acid FLAVONOIDS
下载PDF
Changes in the Production of Salicylic and Jasmonic Acid in Potato Plants (<i>Solanum tuberosum</i>) as Response to Foliar Application of Biotic and Abiotic Inductors
6
作者 Esmeralda González-Gallegos Elan Laredo-Alcalá +2 位作者 Juan Ascacio-Valdés Diana Jasso de Rodríguez Francisco Daniel Hernández-Castillo 《American Journal of Plant Sciences》 2015年第11期1785-1791,共7页
An alternative to the use of chemical fungicides is to enhance the defensive response of plants by appropriate stimulation, a phenomenon known as induction of resistance. The aim of this study was to determine the cha... An alternative to the use of chemical fungicides is to enhance the defensive response of plants by appropriate stimulation, a phenomenon known as induction of resistance. The aim of this study was to determine the changes of endogen levels of salicylic acid (SA) and jasmonic acid (JA) in potato plants as response to foliar application of biotic and abiotic inductors. Treatments T1 = Best Ultra F (Bacillus spp. 108 cfu/mL and Pseudomonas fluorescens 108 cfu/mL) 0.5%, T2 = FullKover HF (microbial jasmonic acid 1500 ppm) 0.2%, T3 = T1 0.5% + T2 0.1%, T4 = Milor&reg (Chlorothalonil + Metalaxyl) 0.5% and T5 = control (water) were applied in potato plants. The application of biotic and abiotic inductors improved the SA and JA production in potato plants. The production of salicylic acid in potato plants was observed by application of Bacillus spp. and Pseudomonas fluorescens (T1) and fungicide Milor&reg (T4). The application of T1 Best Ultra F, T2 FullKover HF (microbial JA), T3 (T1 + T2) and T4 Milor&reg improved the JA production in potato plants. 展开更多
关键词 Salicylic ACID jasmonic ACID Bacillus spp. Pseudomonas FLUORESCENS
下载PDF
Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize
7
作者 Jiong Liu Lu Li +12 位作者 Zhilong Xiong Christelle AMRobert Baozhu Li Shan He Wenjie Chen Jiasheng Bi Guanqing Zhai Siyi Guo Hui Zhang Jieping Li Shutang Zhou Xi Zhang Chun‐Peng Song 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第1期143-159,共17页
Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation.Composed of a complex mixture of very-long-chain fatty acids(VLCFAs)and their derivatives,cuticular ... Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation.Composed of a complex mixture of very-long-chain fatty acids(VLCFAs)and their derivatives,cuticular wax constitutes the first physical line of defense against herbivores.Here,we report the function of Glossy 8(ZmGL8),which encodes a 3-ketoacyl reductase belonging to the fatty acid elongase complex,in orchestrating wax production and jasmonic acid(JA)-mediated defenses against herbivores in maize(Zea mays).The mutation of GL8 enhanced chemical defenses by activating the JA-dependent pathway.We observed a trade-off between wax accumulation and JA levels across maize glossy mutants and 24 globally collected maize inbred lines.In addition,we demonstrated that mutants defective in cuticular wax biosynthesis in Arabidopsis thaliana and maize exhibit enhanced chemical defenses.Comprehensive transcriptomic and lipidomic analyses indicated that the gl8 mutant confers chemical resistance to herbivores by remodeling VLCFA-related lipid metabolism and subsequent JA biosynthesis and signaling.These results suggest that VLCFA-related lipid metabolism has a critical role in regulating the trade-offs between cuticular wax and JA-mediated chemical defenses. 展开更多
关键词 cuticular wax fall armyworm herbivore resistance jasmonic acid MAIZE plant-herbivore interactions
原文传递
MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple
8
作者 Jian-Ping An Rui-Rui Xu +3 位作者 Xiao-Na Wang Xiao-Wei Zhang Chun-Xiang You Yuepeng Han 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第2期265-284,共20页
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neg... Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neglected.Although the signal transduction pathways of gibberellin(GA)and jasmonic acid(JA)and their regulation of anthocyanin biosynthesis have been investigated,the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated.In this study,we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals.MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33,which are two recognized positive regulators of anthocyanin biosynthesis.MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33.The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex.The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex.Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis.This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals. 展开更多
关键词 anthocyanin biosynthesis bHLH transcription factor GIBBERELLIN jasmonic acid regulatory network transcriptional regulation
原文传递
Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron 被引量:6
9
作者 Yupu Huang Sheliang Wang +4 位作者 Chuang Wang Guangda Ding Hongmei Cai Lei Shi Fangsen Xu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第5期937-948,共12页
The essential micronutrient boron(B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid(JA) in plant growth inhibition under B deficiency remains unclear. Here,we re... The essential micronutrient boron(B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid(JA) in plant growth inhibition under B deficiency remains unclear. Here,we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore,examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression(OE)lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions,compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B.These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth. 展开更多
关键词 Arabidopsis thaliana ERF018 low B jasmonic acid biosynthesis jasmonic acid signaling plant growth
原文传递
Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight
10
作者 Xinlong Gao Fan Li +7 位作者 Yikun Sun Jiaqi Jiang Xiaolin Tian Qingwen Li Kaili Duan Jie Lin Huiquan Liu Qinhu Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1238-1258,共21页
Fusarium head blight(FHB),mainly caused by the fungal pathogen Fusarium graminearum,is one of the most destructive wheat diseases.Besides directly affecting the yield,the mycotoxin residing in the kernel greatly threa... Fusarium head blight(FHB),mainly caused by the fungal pathogen Fusarium graminearum,is one of the most destructive wheat diseases.Besides directly affecting the yield,the mycotoxin residing in the kernel greatly threatens the health of humans and livestock.Xinong 979(XN979)is a widely cultivated wheat elite with high yield and FHB resistance.However,its resistance mechanism remains unclear.In this study,we studied the expression of genes involved in plant defense in XN979 by comparative transcriptomics.We found that the FHB resistance in XN979 consists of two lines of defense.The first line of defense,which is constitutive,is knitted via the enhanced basal expression of lignin and jasmonic acid(JA)biosynthesis genes.The second line of defense,which is induced upon F.graminearum infection,is contributed by the limited suppression of photosynthesis and the struggle of biotic stress-responding genes.Meanwhile,the effective defense in XN979 leads to an inhibition of fungal gene expression,especially in the early infection stage.The formation of the FHB resistance in XN979 may coincide with the breeding strategies,such as selecting high grain yield and lodging resistance traits.This study will facilitate our understanding of wheat-F.graminearum interaction and is insightful for breeding FHB-resistant wheat. 展开更多
关键词 Fusarium head blight Xinong 979 LIGNIN jasmonic acid PHOTOSYNTHESIS Fusarium graminearum
下载PDF
Rice gene OsUGT75A regulates seedling emergence under deep-sowing conditions
11
作者 Jia Zhao Siyu Liu +5 位作者 Xiaoqian Zhao Zhibo Huang Shan Sun Zixuan Zeng Yongqi He Zhoufei Wang 《The Crop Journal》 SCIE CSCD 2024年第1期133-141,共9页
Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by... Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions. 展开更多
关键词 Abscisic acid Deep-sowing jasmonic acid RICE Shoot length
下载PDF
Overexpression of auxin/indole-3-acetic acid gene MdIAA24 enhances Glomerella leaf spot resistance in apple(Malus domestica)
12
作者 Qian Wang Dong Huang +2 位作者 Wenyan Tu Fengwang Ma Changhai Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期15-24,共10页
Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/i... Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/indole-3-acetic acid(IAA)gene Md IAA24 overexpression in enhancing apple resistance to Glomerella leaf spot(GLS)caused by Colletotrichum fructicola(Cf).Analysis revealed that,upon Cf infection,35S::Md IAA24 plants exhibited enhanced superoxide dismutase(SOD)and peroxidase(POD)activity,as well as a greater amount of glutathione(reduced form)and ascorbic acid accumulation,resulting in less H_(2)O_(2)and superoxide anion(O_(2)^(-))in apple leaves.Furthermore,35S::Md IAA24 plants produced more protocatechuic acid,proanthocyanidins B1,proanthocyanidins B2 and chlorogenic acid when infected with Cf.Following Cf infection,35S::Md IAA24 plants presented lower levels of IAA and jasmonic acid(JA),but higher levels of salicylic acid(SA),along with the expression of related genes.The overexpression of Md IAA24 was observed to enhance the activity of chitinase andβ-1,3-glucanase in Cfinfected leaves.The results indicated the ability of Md IAA24 to regulate the crosstalk between IAA,JA and SA,and to improve reactive oxygen species(ROS)scavenging and defense-related enzymes activity.This jointly contributed to GLS resistance in apple. 展开更多
关键词 APPLE MdIAA24 Glomerella leaf spot(GLS) Antioxidant capacity AUXIN Salicylic acid jasmonic acid
下载PDF
Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice 被引量:27
13
作者 Chao Zhang Zuomei Ding +16 位作者 Kangcheng Wu Liang Yang Yang Li Zhen Yang Shan Shi Xiaojuan Liu Shanshan Zhao Zhirui Yang Yu Wang Luping Zheng Juan Wei Zhenguo Du Aihong Zhang Hongqin Miao Yi Li Zujian Wu Jianguo Wu 《Molecular Plant》 SCIE CAS CSCD 2016年第9期1302-1314,共13页
MicroRNAs (miRNAs ) 是植物开发和主人病毒相互作用的枢轴的调节的人。然而,角色和涉及病毒的感染和主人危险性的特定的 miRNAs 的行动模式仍然保持大部分不清楚。在这研究,我们给那瑞斯看引起 miR319 的增加的累积,但是减少的破旧... MicroRNAs (miRNAs ) 是植物开发和主人病毒相互作用的枢轴的调节的人。然而,角色和涉及病毒的感染和主人危险性的特定的 miRNAs 的行动模式仍然保持大部分不清楚。在这研究,我们给那瑞斯看引起 miR319 的增加的累积,但是减少的破旧绝技病毒(RRSV ) 感染调整 miR319 的 TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF ) 的表示基因,特别 TCP21,在米饭植物。转基因的米饭植物 overexpressing miR319 或 downregulating TCP21 展出了像疾病的显型并且与野类型的植物比较显示出显著地更高的危险性到 RRSV。相反,仅仅温和的疾病症状在感染 RRSV 的线 overexpressing TCP21 并且特别在转基因的植物 overexpressing 被观察 miR319 抵抗的 TCP21。miR319 的 RRSV 感染和 overexpression 在米饭与 JA 生合成和信号相关的基因的 downregulated 表示一起引起了减少的内长的 jasmonic 酸(JA ) 层次。然而,有甲基 jasmonate 的米饭植物的治疗减轻了 RRSV 引起并且减少了病毒累积的疾病症状。一起拿,我们的结果建议由在米饭的 RRSV 感染的 miR319 的正式就职压制调停 JA 的防卫便于病毒感染和症状开发。 展开更多
关键词 miR319 米饭破旧绝技病毒 RRSV TCP21 病毒的感染 jasmonic
原文传递
Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation 被引量:13
14
作者 Gui Jie Lei Li Sun +3 位作者 Ying Sun Xiao Fang Zhu Gui Xin Li Shao Jian Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2020年第2期218-227,共10页
Jasmonic acid(JA)is thought to be involved in plant responses to cadmium(Cd)stress,but the underlying molecular mechanisms are poorly understood.Here,we show that Cd treatment rapidly induces the expression of genes p... Jasmonic acid(JA)is thought to be involved in plant responses to cadmium(Cd)stress,but the underlying molecular mechanisms are poorly understood.Here,we show that Cd treatment rapidly induces the expression of genes promoting endogenous JA synthesis,and subsequently increases the JA concentration in Arabidopsis roots.Furthermore,exogenous methyl jasmonate(MeJA)alleviates Cd-generated chlorosis of new leaves by decreasing the Cd concentration in root cell sap and shoot,and decreasing the expression of the AtIRT1,AtHMA2 and AtHMA4 genes promoting Cd uptake and long-distance translocation,respectively.In contrast,mutation of a key JA synthesis gene,At AOS,greatly enhances the expression of AtIRT1,AtHMA2 and AtHMA4,increases Cd concentration in both roots and shoots,and confers increased sensitivity to Cd.Exogenous Me JA recovers the enhanced Cd-sensitivity of the ataos mutant,but not of atcoi1,a JA receptor mutant.In addition,exogenous Me JA reduces NO levels in Cd-stressed Arabidopsis root tips.Taken together,our results suggest that Cd-induced JA acts via the JA signaling pathway and its effects on NO levels to positively restrict Cd accumulation and alleviates Cd toxicity in Arabidopsis via suppression of the expression of genes promoting Cd uptake and long-distance translocation. 展开更多
关键词 jasmonic ACID CADMIUM UPTAKE TRANSLOCATION
原文传递
Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth.suspension cells through a salicylic acid(SA)-dependent and a jasmonic acid(JA)-dependent signal pathway 被引量:9
15
作者 XU Maojun1, DONG Jufang1 & ZHU Muyuan2 Department of Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310012, China 《Science China(Life Sciences)》 SCIE CAS 2006年第4期379-389,共11页
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosy... Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthe-sis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in trans-genic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced pu-erarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor- and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin bio-synthesis through SA- and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively. 展开更多
关键词 nitric oxide (NO) salicylic ACID (SA) jasmonic ACID (JA) fungal elicitor puerarin.
原文传递
Systemic induction of H_(2)O_(2) in pea seedlings pretreated by wounding and exogenous jasmonic acid 被引量:7
16
作者 LIU Yan 1,2 , HUANG Weidong 1 , ZHAN Jicheng 1 & PAN Qiuhong 1 1. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China 2. College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China 《Science China(Life Sciences)》 SCIE CAS 2005年第3期202-212,共11页
Pea seedlings (Pisum sativum L.) were used as materials to test the timings and compartments of hydrogen peroxide (H2O2) triggered by wounding and exogenous jasmonic acid (JA). The results showed that H2O2 could be sy... Pea seedlings (Pisum sativum L.) were used as materials to test the timings and compartments of hydrogen peroxide (H2O2) triggered by wounding and exogenous jasmonic acid (JA). The results showed that H2O2 could be systemically induced by wounding and exogenous JA. H2O2 increased within 1 h and reached the peak 3―5 h after wounding in either the wounded leaves or the unwounded leaves adjacent to the wounded ones and the inferior leaves far from the wounded ones. After this, H2O2 decreased and recovered to the control level 12 h after wounding. The activities of antioxidant enzymes, however, were rapidly increased by wounding. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, could significantly inhibit H2O2 burst that was mediated by wounding and exogenous JA. Assay of H2O2 subcellular location showed that H2O2 in response to wounding and exogenous JA was predominantly accumulated in plasma membrane, cell wall and apoplasmic space. Numerous JA (gold particles) was found via immu- nogold electron microscopy to be located in cell wall and phloem zones of mesophyll cell after wounding. 展开更多
关键词 wounding jasmonic acid H2O2 HISTOCHEMICAL location cytochemical location IMMUNOGOLD electron MICROSCOPY location.
原文传递
Analysis of the essential DNA region for OsEBP-89 promoter in response to methyl jasmonic acid 被引量:6
17
作者 LI Ang1,2, CHEN LiangLiang1,3, REN HaiYun3, WANG XueChen2, ZHANG HaiWen1,4 & HUANG Rong- Feng1,4 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2 National Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China 3 College of Life Sciences, Beijing Normal University, Beijing 100875, China 4 National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China 《Science China(Life Sciences)》 SCIE CAS 2008年第3期280-285,共6页
In rice, the characterization of OsEBP-89 is inducible by various stress- or hormone-stimuli, including ethylene, abscisic acid (ABA), jasmonate acid (JA), drought and cold. Here, we report the investigation of essent... In rice, the characterization of OsEBP-89 is inducible by various stress- or hormone-stimuli, including ethylene, abscisic acid (ABA), jasmonate acid (JA), drought and cold. Here, we report the investigation of essential DNA region within OsEBP-89 promoter for methyl jasmonic acid (MeJA) induction. PLACE analysis indicates that this promoter sequence contains multiple potential elements in response to various stimuli. First, we fused this promoter with GUS gene and analyzed its expression under MeJA treatment through Agrobacterium infiltration mediating transient expression in tobacco leaves. Our results revealed that this chimeric gene could be inducible by MeJA in tobacco leaves. To further de- termine the crucial sequences responsible for MeJA induction, we generated a series of deletion pro- moters which were fused with GUS reporter gene respectively. The results of transient expression of GUS gene driven by these mutant promoters show that the essential region for MeJA induction is po- sitioned in the region between -1200 and -800 in OsEBP-89 promoter containing a G-box (?1127), which is distinct from the essential region containing ERE (?562) for ACC induction. In all, our finding is helpful in understanding the molecular mechanism of OsEBP-89 expression under different stimuli. 展开更多
关键词 OsEBP-89 ESSENTIAL DNA REGION METHYL jasmonic acid transient assay PROMOTER TOBACCO leaves
原文传递
Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE(JOX)2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs 被引量:3
18
作者 Xin Zhang Dongli Wang +6 位作者 Joyce Elberse Linlu Qi Wei Shi You-Liang Peng Robert C.Schuurink Guido Van den Ackerveken Junfeng Liu 《Molecular Plant》 SCIE CAS CSCD 2021年第5期820-828,共9页
The jasmonic acid(JA)signaling pathway is used by plants to control wound responses.The persistent accumulation of JA inhibits plant growth,and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs(... The jasmonic acid(JA)signaling pathway is used by plants to control wound responses.The persistent accumulation of JA inhibits plant growth,and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs(JOXs,also named jasmonic acid oxidases)is therefore vital for plant growth,while structural details of JA recognition by JOXs are unknown.Here,we present the 2.65Åresolution X-ray crystal structure of Arabidopsis JOX2 in complex with its substrate JA and its co-substrates 2-oxoglutarate and Fe(Ⅱ).JOX2 contains a distorted double-stranded p helix(DSBH)core flanked by a helices and loops.JA is bound in the narrow substrate pocket by hydrogen bonds with the arginine triad R225,R350,and R354 and by hydrophobic interactions mainly with the phenylalanine triad F157,F317,and F346.The most critical residues for JA binding are F157 and R225,both from the DSBH core,which interact with the cyclopentane ring of JA.The spatial distribution of critical residues for JA binding and the shape of the substrate-binding pocket together define the substrate selectivity of the JOXs.Sequence alignment shows that these critical residues are conserved among JOXs from higher plants.Collectively,our study provides insights into the mechanism by which higher plants hydroxylate the hormone JA. 展开更多
关键词 crystal structure JASMONATE-INDUCED OXYGENASEs(JOXs) jasmonic acid(JA) 12-OH-JA HYDROXYLATION
原文传递
Phytohormones Jasmonic Acid,Salicylic Acid,Gibberellins,and Abscisic Acid are Key Mediators of Plant Secondary Metabolites 被引量:1
19
作者 Zong-You Lv Wen-Jing Sun +4 位作者 Rui Jiang Jun-Feng Chen Xiao Ying Lei Zhang Wan-Sheng Chen 《World Journal of Traditional Chinese Medicine》 2021年第3期307-325,共19页
Until recently,many studies on the role of phytohormones in plant secondary metabolism focused on jasmonic acid(JA),salicylic acid(SA),gibberellins(GA),and abscisic acid(ABA).It is now clear that phytohormone?induced ... Until recently,many studies on the role of phytohormones in plant secondary metabolism focused on jasmonic acid(JA),salicylic acid(SA),gibberellins(GA),and abscisic acid(ABA).It is now clear that phytohormone?induced regulation of signaling occurs via regulation of the biosynthetic pathway genes at the transcriptional level or through posttranslational regulation,or an increase in secondary metabolite deposition(e.g.,trichomes).Here,we summarize recent advances,updating the current reports on the molecular machinery of phytohormones JA,SA,GA,and ABA involved in plant secondary metabolites.This review emphasizes the differences and similarities among the four phytohormones in regulating various secondary metabolic biosynthetic pathways and also provides suggestions for further research. 展开更多
关键词 Abscisic acid GIBBERELLINS jasmonic acid salicylic acid secondary metabolism
原文传递
Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice
20
作者 Zaofa Zhong Lijing Zhong +4 位作者 Xiang Zhu Yimin Jiang Yihong Zheng Tao Lan Haitao Cui 《The Crop Journal》 SCIE CSCD 2024年第1期301-307,共7页
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t... Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance. 展开更多
关键词 IMMUNITY JASMONATE Oryza sativa OsSPL10 Transcription factor
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部