期刊文献+
共找到294篇文章
< 1 2 15 >
每页显示 20 50 100
基于Tukey规则与初始中心点优化的K⁃means聚类改进算法 被引量:2
1
作者 柳菁 邱紫滢 +1 位作者 郭茂祖 余冬华 《数据采集与处理》 CSCD 北大核心 2023年第3期643-651,共9页
针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,... 针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K⁃means++聚类算法,有效地提升了聚类性能。 展开更多
关键词 数据挖掘 kmeans算法 Tukey规则 中心点优化
下载PDF
基于改进K-means聚类的在线新闻评论主题抽取 被引量:15
2
作者 夏火松 李保国 杨培 《情报学报》 CSSCI 北大核心 2016年第1期55-65,共11页
新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先... 新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先在预处理阶段增加同义词替换和自动构建领域词典的部分,改善了数据稀疏性和高维性。其次,提出了K-means改进算法,用隐藏长评论-最大距离法选初始点,解决了初始点多为离群点的问题,用方差拐点确定K值,解决了预先设定聚类个数的问题,实验发现了先用BW权重选初始点,再用新提出的BW-DF权重聚类的效果最好。最后,将改进算法与原算法的聚类效果比较,实验结果表明,改进算法准确率高,抽取新闻评论主题的效果明显。 展开更多
关键词 在线新闻评论 k—means聚类改进 主题抽取 同义词替换 分词领域词典
下载PDF
基于改进K均值聚类的光谱重建训练样本选择研究
3
作者 刘振 刘莉 +2 位作者 樊硕 赵安然 刘思鲁 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期29-35,共7页
光谱反射率重建过程中,训练样本的选择方法及样本容量与重建精度密切相关,寻找一种高效的训练样本选择方法是光谱重建的目标之一。K均值聚类计算复杂度小,计算效率高,但因聚类初始值选择的随机性,以及离群点的影响致使聚类结果不稳定,... 光谱反射率重建过程中,训练样本的选择方法及样本容量与重建精度密切相关,寻找一种高效的训练样本选择方法是光谱重建的目标之一。K均值聚类计算复杂度小,计算效率高,但因聚类初始值选择的随机性,以及离群点的影响致使聚类结果不稳定,进而影响光谱重建的精度。基于此,提出了一种改进K均值聚类的训练样本选择方法。首先,将训练样本集的几何中心作为聚类中心的初始值;其次,基于高斯函数构建样本空间分布概率密度函数,并以欧几里德(欧式)距离作为其他聚类中心的度量依据;最后,在训练样本集中,基于簇内平方差度量光谱反射率样本间的相似度,将每个聚类子集中与中心距离最近的样本作为训练样本。为验证该方法的有效性,通过主成分分析法进行光谱重建。实验结果表明,所提的方法相较于传统的方法,光谱重建精度有一定的提高,重建光谱的平均均方根误差小于4%, CIE DE2000色差小于3.756 7。提出的改进的K均值聚类的训练样本选择方法,能够一定程度上提高了光谱重建精度,基本满足复制再现图像的要求。 展开更多
关键词 光谱重建 训练样本 算法 改进k均值
下载PDF
基于改进K均值聚类的光伏板缺陷检测方法
4
作者 赵强 刘胜杰 +2 位作者 韩东成 刘常瑜 杨世植 《红外技术》 CSCD 北大核心 2024年第4期475-482,共8页
为了能够对光伏组件热斑部分准确地识别和提取,提出了一种基于HSV空间模型的改进K均值聚类图像处理方法。首先,将红外图像进行HSV空间转换和双边滤波处理,去除噪声并提高图像对比度;其次,使用高斯核函数估计实现图像灰度概率密度函数提... 为了能够对光伏组件热斑部分准确地识别和提取,提出了一种基于HSV空间模型的改进K均值聚类图像处理方法。首先,将红外图像进行HSV空间转换和双边滤波处理,去除噪声并提高图像对比度;其次,使用高斯核函数估计实现图像灰度概率密度函数提取,并以此获取初始聚类中心;最后,利用先验知识对图像进行K均值聚类,提取和量化热斑缺陷。研究结果表明,该方法能够快速地检测定位热斑位置并统计出光伏板损坏程度,具有较高的精度以及较好的灵敏性和稳定性。 展开更多
关键词 红外图像 缺陷检测 热斑 光伏板 HSV空间模型 改进k均值
下载PDF
基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7
5
作者 王越 王泉 +1 位作者 吕奇峰 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-m... 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 展开更多
关键词 k—means算法 初始中心 维间加权 Iris数据集
下载PDF
驾驶员避撞转向行为的改进K-means聚类与识别 被引量:7
6
作者 赵治国 冯建翔 +4 位作者 周良杰 王凯 胡昊锐 张海山 宁忠麟 《汽车工程》 EI CSCD 北大核心 2020年第1期52-58,共7页
本文中根据不同工况驾驶员转向行为数据,提出了基于驾驶员避撞转向行为特征的聚类算法。首先搭建驾驶模拟器,采集了定半径转向、常规换道和紧急避撞转向工况下的驾驶行为数据,通过对比正常行驶和紧急避障工况下驾驶员转向行为数据,定性... 本文中根据不同工况驾驶员转向行为数据,提出了基于驾驶员避撞转向行为特征的聚类算法。首先搭建驾驶模拟器,采集了定半径转向、常规换道和紧急避撞转向工况下的驾驶行为数据,通过对比正常行驶和紧急避障工况下驾驶员转向行为数据,定性分析了紧急避撞转向特点。之后,利用皮尔逊相关系数法分析了描述驾驶员转向行为的观测变量与紧急避撞转向行为的相关性,得出转向盘转速与转向工况的相关性最高。接着,以转向盘转速作为聚类特征参数,利用改进K均值(K-means++)聚类方法对转向行为数据进行了聚类,将转向行为划分为正常转向和紧急避撞转向,实现了紧急避撞转向工况的识别。最后,通过实车试验验证了所提出的紧急避撞转向行为K-means++聚类方法可有效识别驾驶员紧急避撞转向行为,聚类精度达96.7%。 展开更多
关键词 避撞转向行为 相关性分析 改进k均值 识别
下载PDF
一种改进的K-means聚类彩色图像分割方法 被引量:18
7
作者 刘小丹 牛少敏 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2012年第2期90-93,共4页
图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐... 图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐受到关注.该文在前人对彩色图像分割问题的大量研究成果基础上,提出了一种将K-means聚类、蚁群算法以及分水岭算法相结合的分割方法.本方法有效的克服了聚类数目必须依据先验知识提前设定、最初的聚类中心是随机选取的、聚类的效果好坏依赖于距离判定公式的缺陷. 展开更多
关键词 k—means 彩色图像分割 蚁群算法 分水岭算法
下载PDF
一种K-means聚类算法的改进与应用 被引量:20
8
作者 张杰 卓灵 朱韵攸 《电子技术应用》 北大核心 2015年第1期125-128,131,共5页
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离... K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。 展开更多
关键词 数据挖掘 算法 k—means 入侵检测
下载PDF
一种基于改进K-means的文档聚类算法的实现研究 被引量:7
9
作者 岑咏华 王晓蓉 吉雍慧 《现代图书情报技术》 CSSCI 北大核心 2008年第12期73-79,共7页
在对文档聚类的含义、作用和一般过程的阐述基础上,分析一种基于"最小最大"原则初始质心优选的改进K-means聚类的基本思想,并重点设计相关的聚类算法,实现聚类系统,基于系统对300篇学术文档及其相关特征词语进行聚类实验。实... 在对文档聚类的含义、作用和一般过程的阐述基础上,分析一种基于"最小最大"原则初始质心优选的改进K-means聚类的基本思想,并重点设计相关的聚类算法,实现聚类系统,基于系统对300篇学术文档及其相关特征词语进行聚类实验。实验结果表明,本文所设计和实现的改进K-means的聚类算法表现出较好的性能。 展开更多
关键词 文档 k—means
下载PDF
一种基于改进PSO的K-means优化聚类算法 被引量:27
10
作者 谢秀华 李陶深 《计算机技术与发展》 2014年第2期34-38,共5页
针对传统的K-means算法对初始聚类中心的选取敏感、容易收敛到局部最优的缺点,提出一种基于改进粒子群优化算法(PSO)的K-means优化聚类算法。该算法利用PSO算法强大的全局搜索能力对初始聚类中心的选取进行优化:通过动态调整惯性权重等... 针对传统的K-means算法对初始聚类中心的选取敏感、容易收敛到局部最优的缺点,提出一种基于改进粒子群优化算法(PSO)的K-means优化聚类算法。该算法利用PSO算法强大的全局搜索能力对初始聚类中心的选取进行优化:通过动态调整惯性权重等参数增强PSO算法的性能;利用群体适应度方差决定算法中前部分PSO算法和后部分Kmeans算法的转换时机;设置变量实时监控各个粒子和粒子群的最优值变化情况,及时地对出现早熟收敛的粒子进行变异操作,从而为K-means算法搜索到全局最优的初始聚类中心,使聚类结果不受初始聚类中心影响,易于获得全局最优解。实验结果表明文中提出的改进算法与传统聚类算法相比具有更高的聚类正确率、更好的聚类质量及全局搜索能力。 展开更多
关键词 k—means算法 粒子群优化算法 全局最优
下载PDF
基于改进K-means聚类和量子粒子群算法的多航迹规划 被引量:5
11
作者 董阳 王瑾 柏鹏 《电讯技术》 北大核心 2014年第9期1249-1253,共5页
针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚... 针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚类准确率低的问题。根据产生的初始聚类中心,将粒子划分成多个子种群,利用QPSO算法对每个子种群进行优化,使得每个子种群可以产生一条可行航迹。仿真分析证明了改进算法可以有效保证子种群之间的多样性,生成较为分散的多条可行航迹。 展开更多
关键词 无人机 多航迹规划 排挤机制 量子粒子群优化 k—means
下载PDF
一种改进的K-means蚁群聚类算法 被引量:11
12
作者 李振 贾瑞玉 《计算机技术与发展》 2015年第12期28-31,共4页
现有的K-means蚁群聚类算法,首先进行K-means聚类算法操作,快速、粗略地确定初始聚类中心,接着根据上一步获得的聚类中心再进行蚁群算法聚类操作,有效地解决蚁群聚类算法收敛速度过慢的问题。研究发现,现有的Kmeans蚁群聚类算法并没有... 现有的K-means蚁群聚类算法,首先进行K-means聚类算法操作,快速、粗略地确定初始聚类中心,接着根据上一步获得的聚类中心再进行蚁群算法聚类操作,有效地解决蚁群聚类算法收敛速度过慢的问题。研究发现,现有的Kmeans蚁群聚类算法并没有改善算法在迭代后期易出现收敛于非全局最优的缺陷。针对这一问题,提出一种改进的Kmeans蚁群聚类算法。每次迭代结束时,随机选择一个或多个簇,再从选中的簇里选择含有信息素最小的节点进行变异操作,把选中的节点变异到其他簇,计算评价值判断变异是否进行。仿真实验结果表明,用F值表示的平均值和最差结果都比原有的算法较好,有效解决了原有算法易收敛于非全局最优及早熟问题,但由于变异操作使算法运行时间相对较长。 展开更多
关键词 k—means算法 蚁群算法 组合 变异
下载PDF
改进的K-Means聚类算法在保险客户信用分析中的算法实现 被引量:2
13
作者 宋加升 陈琰 《哈尔滨理工大学学报》 CAS 北大核心 2009年第1期116-119,共4页
针对保险业对客户信息的分析中缺乏考虑客户信用分析的问题,根据聚类分析算法理论和保险公司客户数据库特点,进一步对K-means聚类算法在大样本环境下初始聚类中心的选取提出有效改进,同时选取一家财产保险公司的客户信用数据,来探讨聚... 针对保险业对客户信息的分析中缺乏考虑客户信用分析的问题,根据聚类分析算法理论和保险公司客户数据库特点,进一步对K-means聚类算法在大样本环境下初始聚类中心的选取提出有效改进,同时选取一家财产保险公司的客户信用数据,来探讨聚类算法在保险客户信用分析中的应用. 展开更多
关键词 分析 k—means算法 保险客户
下载PDF
一种改进的K-means聚类算法 被引量:5
14
作者 周爱武 崔丹丹 肖云 《微型机与应用》 2011年第21期17-19,共3页
K-means算法是最常用的一种基于划分的聚类算法,但该算法需要事先指定K值、随机选择初始聚类中心等的缺陷,从而影响了K-means聚类结果的稳定性。针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法确定初始... K-means算法是最常用的一种基于划分的聚类算法,但该算法需要事先指定K值、随机选择初始聚类中心等的缺陷,从而影响了K-means聚类结果的稳定性。针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法确定初始聚类中心,然后进行聚类,得出最终的聚类结果。实验证明,该改进算法比随机选择初始聚类中心的算法性能得到了提高,并且具有更高的准确性及稳定性。 展开更多
关键词 欧氏距离 k—means 优化初始中心
下载PDF
一种基于复合形粒子群算法的改进k-means聚类算法 被引量:2
15
作者 易云飞 吴启明 唐凤仙 《软件导刊》 2008年第10期46-48,共3页
针对k-means算法事先必须知道聚类的数目,难以确定初始中心以及受异常点影响很大等缺点,提出了一种改进的k-means聚类算法。改进后的算法首先使用复合形粒子群算法来选取聚类的初始中心点,然后使用k-means算法快速收敛获取聚类结果。Iri... 针对k-means算法事先必须知道聚类的数目,难以确定初始中心以及受异常点影响很大等缺点,提出了一种改进的k-means聚类算法。改进后的算法首先使用复合形粒子群算法来选取聚类的初始中心点,然后使用k-means算法快速收敛获取聚类结果。Iris测试数据集的实验结果表明了改进后的算法能够合理区分不同类型的簇集,可以有效地识别异常点,具有较好的性能。 展开更多
关键词 复合形法 粒子群优化算法 k—means算法
下载PDF
基于改进K-Means算法的教学反思文本聚类研究
16
作者 何聚厚 范文静 《计算机技术与发展》 2013年第11期99-102,107,共5页
对教学反思内容的准确评估是教师基于教学反思过程提升其专业能力的重要保障。基于改进的K-Means算法对相同主题的教学反思文本进行聚类,通过给定初始聚类中心K的取值范围使其可以在给定范围内自动增加,在聚类过程中加入相似度阈值以限... 对教学反思内容的准确评估是教师基于教学反思过程提升其专业能力的重要保障。基于改进的K-Means算法对相同主题的教学反思文本进行聚类,通过给定初始聚类中心K的取值范围使其可以在给定范围内自动增加,在聚类过程中加入相似度阈值以限定文本间相似度的取值范围,实现对教学反思文本的分类和对自我反思文本的定位。实验结果表明改进的K-Means算法在反思文本聚类的准确率和稳定性方面比传统算法有所提高,且能根据教学反思内容准确地进行自动分类。 展开更多
关键词 k—means算法 文本 教学反思 相似度 均值
下载PDF
Web文档聚类中k-means算法的一种改进算法 被引量:1
17
作者 王子兴 冯志勇 《微型电脑应用》 2007年第8期6-8,4,共3页
文章介绍了Web文档聚类中普遍使用的基于分割的k-means算法,分析了k-means算法所使用的向量空间模型和基于距离的相似性度量的局限性,从而提出了一种改善向量空间模型以及相似性度量的方法。实验表明,改进后的k-means算法不仅保留了原k-... 文章介绍了Web文档聚类中普遍使用的基于分割的k-means算法,分析了k-means算法所使用的向量空间模型和基于距离的相似性度量的局限性,从而提出了一种改善向量空间模型以及相似性度量的方法。实验表明,改进后的k-means算法不仅保留了原k-means算法效率高的优点,而且具有更高的准确性。 展开更多
关键词 文档 k—means算法 向量空间模型 相似性度量 权重评价函数
下载PDF
K-means算法初始聚类中心选择的优化 被引量:50
18
作者 冯波 郝文宁 +1 位作者 陈刚 占栋辉 《计算机工程与应用》 CSCD 2013年第14期182-185,192,共5页
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得... 针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。 展开更多
关键词 k—means算法 初始中心 TDkM算法
下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
19
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 k—means算法 初始中心 直方图 最优划分方法
原文传递
初始中心优化的K-Means聚类算法 被引量:47
20
作者 李飞 薛彬 黄亚楼 《计算机科学》 CSCD 北大核心 2002年第7期94-96,共3页
1.引言 聚类分析(clustering)是人工智能研究的重要领域.聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域.
关键词 遗传算法 随机全局优化搜索算法 k—means算法 初始中心 优化
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部