基于提速道岔S700K转辙机故障的功率曲线在频域上的多重特征,提出了基于改进多尺度排列熵的多变量支持向量机(structured support vector machine, SSVM)故障诊断方法.首先对S700K转辙机动作功率曲线进行集合经验模态分解和小波分解,获...基于提速道岔S700K转辙机故障的功率曲线在频域上的多重特征,提出了基于改进多尺度排列熵的多变量支持向量机(structured support vector machine, SSVM)故障诊断方法.首先对S700K转辙机动作功率曲线进行集合经验模态分解和小波分解,获得两类不同时间尺度的模态分量;再利用改进多尺度排列熵计算不同分量的故障特征参数,为了降低计算维度,应用核主元分析理论,在不损失信号重要特征的情况下,取大于95%贡献率的特征值作为故障特征向量;最后,引入基于决策树的SSVM算法,经过小样本训练得到树状最优故障间隔面,从而实现S700K转辙机故障分类.实验结果表明:该方法可有效判定S700K转辙机故障类型,进而提高故障诊断精度和效率.展开更多
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ...The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.展开更多
文摘基于提速道岔S700K转辙机故障的功率曲线在频域上的多重特征,提出了基于改进多尺度排列熵的多变量支持向量机(structured support vector machine, SSVM)故障诊断方法.首先对S700K转辙机动作功率曲线进行集合经验模态分解和小波分解,获得两类不同时间尺度的模态分量;再利用改进多尺度排列熵计算不同分量的故障特征参数,为了降低计算维度,应用核主元分析理论,在不损失信号重要特征的情况下,取大于95%贡献率的特征值作为故障特征向量;最后,引入基于决策树的SSVM算法,经过小样本训练得到树状最优故障间隔面,从而实现S700K转辙机故障分类.实验结果表明:该方法可有效判定S700K转辙机故障类型,进而提高故障诊断精度和效率.
基金Project(51875481) supported by the National Natural Science Foundation of ChinaProject(2682017CX011) supported by the Fundamental Research Foundations for the Central Universities,China+2 种基金Project(2017M623009) supported by the China Postdoctoral Science FoundationProject(2017YFB1201004) supported by the National Key Research and Development Plan for Advanced Rail Transit,ChinaProject(2019TPL_T08) supported by the Research Fund of the State Key Laboratory of Traction Power,China
文摘The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.