期刊文献+
共找到1,411篇文章
< 1 2 71 >
每页显示 20 50 100
结合精英初始化和K近邻的蛇优化算法
1
作者 王丽娟 刘姝含 +1 位作者 王剑 田亚旗 《计算机应用研究》 CSCD 北大核心 2024年第9期2712-2721,共10页
蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors ... 蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors improved snake optimizer,EKISO)。首先,为了提高初始种群质量,在种群初始化阶段提出精英初始化的方法,根据种群精英个体产生优质初始种群个体;其次,通过振荡因子优化螺旋觅食策略扩大全局勘探阶段的搜索范围、提高算法的局部逃逸能力;最后,在局部开发阶段提出K近邻思想的位置更新方法,增强种群个体之间的信息交互能力,从而加快收敛速度、提高收敛精度。利用14个经典测试函数和4个CEC2017测试函数将该方法与其他7种优化算法进行对比,证明EKISO收敛速度更快、精度更高且不易陷入局部最优。为了进一步验证EKISO的实用性与可行性,将EKISO应用于压力容器设计问题中,通过实验对比分析可知,EKISO在处理实际优化问题上具有一定的优越性。 展开更多
关键词 蛇优化算法 精英初始化 k近邻 振荡因子 工程优化
下载PDF
基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法
2
作者 赵晓峰 王平水 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1056-1060,共5页
无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未... 无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未知节点的横轴、纵轴的空间坐标,确定各网络节点的空间位置;根据网络节点的属性特征与投票机制建立节点复制攻击模型,凭借组合加权k近邻分类法划分节点类型,并将结果传送至簇头节点,由簇头节点做出最后的仲裁,识别出节点复制攻击行为。仿真结果表明,所提方法的节点复制攻击检测率最大值为99.5%,最小值为97.9%,对节点复制攻击检测的耗时为5.41 s,通信开销数据包数量最大值为209个,最小值为81个。 展开更多
关键词 无线传感网络 攻击检测 组合加权k近邻分类 复制节点 部署区域 信标节点
下载PDF
基于概率密度的自适应k近邻缺失值填充方法
3
作者 梁路 林俊跃 霍颖翔 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期80-90,共11页
基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本... 基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本之间的相似性受属性取值概率影响,此时用传统的距离公式来度量相似性是不够准确的。因此,文章针对非均匀分布的不平衡数据集提出了一种自适应k近邻缺失值填充方法(AkNNI):首先,引入属性的概率密度,动态调整各个属性的重要性,凸显稀疏值与缩小频繁值在距离计算上的贡献,从而更好地表达样本的异质性以及捕捉样本之间的相似性;然后,针对高缺失率下数据集中完备样本稀少的情况,综合考虑了样本的相似性和完整性,设计了新的k近邻的选择流程。实验选取了6个非均匀分布数据集,对比了AkNNI方法与其他5种经典填充方法的填充效果,验证了填充后的数据集在k近邻分类器的分类效果,深入探索了3种评估指标的相互关系。实验结果表明AkNNI方法具有更高的填充准确度和分类准确度:在6种缺失值填充算法中,AkNNI方法在各个数据集上取得的平均RMSE最低、平均皮尔逊相关系数最高以及平均分类准确率最高。同时,在高缺失率下,AkNNI方法在各个数据集上仍能保持较低的RMSE、较高的皮尔逊相关系数和较高的分类准确度。 展开更多
关键词 欧氏距离 k近邻 缺失值填充 概率密度 非均匀分布
下载PDF
机器学习中用Python模拟K近邻算法的实现与应用
4
作者 曹光忠 《电脑知识与技术》 2024年第21期36-39,共4页
本文描述了K近邻算法的实现与应用。首先,以图形的方式介绍了K近邻算法的思想;其次使用Python语言自定义类模拟了系统K近邻算法的实现,在实现的过程中要遵循系统算法API接口规范;接下来,将模拟算法与系统算法进行比较,并优化自定义算法... 本文描述了K近邻算法的实现与应用。首先,以图形的方式介绍了K近邻算法的思想;其次使用Python语言自定义类模拟了系统K近邻算法的实现,在实现的过程中要遵循系统算法API接口规范;接下来,将模拟算法与系统算法进行比较,并优化自定义算法;最后,将自定义模拟算法应用到数据集划分和寻找最优超参数中。 展开更多
关键词 模拟 k近邻算法 机器学习
下载PDF
基于深度学习的K近邻图迭代静脉识别算法研究
5
作者 王闪闪 巩长庆 +3 位作者 秦华锋 王军 李艳涛 杨数强 《智能系统学报》 CSCD 北大核心 2024年第5期1149-1156,共8页
深度学习在计算机视觉中具有强大的特征表达能力,近年来广泛应用于静脉特征的提取与识别。通常,基于深度学习的静脉识别模型在训练阶段,每次仅输入1幅图像及其对应的标签,学习图像与标签之间的映射关系,然而,这种每次只处理单幅图像的方... 深度学习在计算机视觉中具有强大的特征表达能力,近年来广泛应用于静脉特征的提取与识别。通常,基于深度学习的静脉识别模型在训练阶段,每次仅输入1幅图像及其对应的标签,学习图像与标签之间的映射关系,然而,这种每次只处理单幅图像的方法,难以捕捉不同类别多幅静脉图像之间的关系。为了解决该问题,提出一种基于深度学习的K近邻图迭代静脉识别算法。用较优的深度学习模型提取掌静脉图像特征;利用K近邻算法通过特征距离在训练集中选出最近的K幅图像及其标签,通过这些特征向量生成标签传播矩阵和标签矩阵;利用图迭代算法预测待分类图像的标签,完成分类。在香港理工大学和同济大学提供的掌静脉数据集上进行实验,最高识别精度分别为99.67%和92.72%。 展开更多
关键词 生物特征识别 掌静脉识别 图像处理 深度学习 k近邻算法 卷积神经网络 图迭代算法 图神经网络
下载PDF
基于非线性定向降维的k近邻致密砂岩储层含气性预测方法
6
作者 宋朝辉 桑文镜 +1 位作者 袁三一 王尚旭 《Applied Geophysics》 SCIE CSCD 2024年第2期221-231,418,共12页
本文提出利用全连接人工神经网络(FANN)进行非线性定向降维并结合k近邻方法分类的致密砂岩储层含气性预测方法。k近邻方法能够依据样本间相似性,针对性地选取对应的部分训练样本建立局部模型,但缺乏含气敏感属性的提取能力,并面临“维... 本文提出利用全连接人工神经网络(FANN)进行非线性定向降维并结合k近邻方法分类的致密砂岩储层含气性预测方法。k近邻方法能够依据样本间相似性,针对性地选取对应的部分训练样本建立局部模型,但缺乏含气敏感属性的提取能力,并面临“维度灾难”问题。由于样本中的含气性特征虽然是重要特征,但不一定是主要特征。线性降维方法难以准确提取这些特征。我们通过训练一个合理搭建的FANN并输出其中间低维特征实现对训练样本和待预测样本的非线性定向降维。这种做法既能够增加样本的可分性,同时避免了通过样本低维空间中的最大差异实现降维而改变样本固有分布特征的问题。另外,k近邻方法对降维数据进行分类,还等效于用k近邻方法替代FANN中具有线性分类作用的深层结构,有利于白化FANN的黑箱问题。本方法在具体的物理场景中挖掘机器学习算法的物理内涵,提高了智能方法的可解释性。将本方法应用在实际数据中,预测结果显示本方法能够一定程度上挖掘局部波形属性中蕴含的含气敏感信息,实现小范围的致密砂岩储层精确刻画。 展开更多
关键词 k近邻方法 致密砂岩储层预测 非线性定向降维 可解释性
下载PDF
基于函数型k近邻分类模型的PM2.5研究
7
作者 刘壮 凌能祥 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期967-970,共4页
文章利用函数型数据分析方法,选取每天24 h的温度数据作为一条独立的曲线样本,并在该基础上建立函数型k近邻分类模型,用以对当天的24 h平均PM_(2.5)质量浓度进行分类判别。分别选取二次型核函数、指数型核函数、三角型核函数建立k近邻... 文章利用函数型数据分析方法,选取每天24 h的温度数据作为一条独立的曲线样本,并在该基础上建立函数型k近邻分类模型,用以对当天的24 h平均PM_(2.5)质量浓度进行分类判别。分别选取二次型核函数、指数型核函数、三角型核函数建立k近邻分类模型,并对其结果进行分析,通过对比发现,利用三角型核函数的k近邻分类模型对PM_(2.5)质量浓度进行分类的准确性最高且最稳健。采用NW(Nadaraya-Watson)核方法与k近邻分类模型进行比较分析,结果表明,k近邻分类模型能有效提高分类的准确率。 展开更多
关键词 函数型数据分类 k近邻 核函数 非参数统计
下载PDF
保护两方隐私的多类型的路网K近邻查询方案
8
作者 曾聪爱 刘亚丽 +2 位作者 陈书仪 朱秀萍 宁建廷 《计算机科学》 CSCD 北大核心 2024年第11期400-417,共18页
在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出... 在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出了一种保护两方隐私的多类型的路网K近邻查询方案MTKNN-MPP。将改进的k-out-of-n不经意传输协议应用于K近邻查询方案中,实现了在保护车辆用户的查询内容隐私和LBSP的兴趣点信息隐私的同时,一次查询多种类型K近邻兴趣点。通过增设车载单元缓存机制,降低了计算代价和通信开销。安全性分析表明,MTKNN-MPP方案能够有效地保护车辆用户的位置隐私、查询内容隐私以及LBSP的兴趣点信息隐私,可以保证车辆的匿名性,能够抵抗合谋攻击、重放攻击、推断攻击、中间人攻击等恶意攻击。性能评估表明,与现有典型的K近邻查询方案相比,MTKNN-MPP方案具有更高的安全性,且在单一类型K近邻查询和多种类型K近邻查询中,查询延迟分别降低了43.23%~93.70%,81.07%~93.93%。 展开更多
关键词 基于位置的服务 两方隐私保护 k近邻查询 不经意传输协议 车联网 多类型
下载PDF
融合动态K近邻Slope_One的协同过滤推荐算法
9
作者 李灵慧 王逊 +1 位作者 王云沼 黄树成 《计算机与数字工程》 2024年第1期156-161,共6页
传统协同过滤推荐算法存在数据稀疏的问题,这会导致算法精确度不足。Slope_One算法简单高效,可以预测用户对某个物品的评分。因此,论文提出融合动态K近邻Slope_One的协同过滤推荐算法,提高推荐算法的精确度。首先利用改进余弦相似度公... 传统协同过滤推荐算法存在数据稀疏的问题,这会导致算法精确度不足。Slope_One算法简单高效,可以预测用户对某个物品的评分。因此,论文提出融合动态K近邻Slope_One的协同过滤推荐算法,提高推荐算法的精确度。首先利用改进余弦相似度公式计算用户相似度,筛选出K个近邻用户进行平均评分偏差计算,利用Slope_One算法预测相应的用户评分并对评分矩阵进行有效填充,然后在新的评分矩阵上,利用基于物品的协同过滤算法进行推荐。 展开更多
关键词 协同过滤 k近邻 Slope_One算法 数据稀疏
下载PDF
基于K近邻算法的空中目标威胁度判断方法
10
作者 张健 李强 +2 位作者 张烨炜 米洋锐 贺泽仁 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期214-219,共6页
针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目... 针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目标威胁度等级作为输出数据,利用K近邻算法构建了目标威胁度评估模型。仿真实验结果表明,该方法能够实现高准确度、实时化的目标威胁度评估,和TOPSIS方法与离差最大化方法进行对比,证明该方法对空中目标异常特征值具有更高的决策效率,更加适用于现代战场的高复杂性,进一步体现了该方法的优越性和可行性。 展开更多
关键词 k近邻算法 威胁度判断 对空目标 无人系统
下载PDF
基于泡沫图像特征加权K近邻算法的锌矿浮选工况识别方法
11
作者 罗靓 彭成 罗浩 《矿产保护与利用》 2024年第5期93-99,共7页
浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图... 浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图像特征与浮选工况类别之间的相关性进行量化,同时评估该特征与其他特征之间的冗余性。然后,计算该特征与浮选工况类别相关性和该特征与其他特征冗余性之间的差值,将这一差值作为特征的权重。其次,在KNN算法中针对欧式距离进行特征加权,以实现KNN算法的特征加权。然后,将特征选择过程嵌入到特征加权KNN分类算法的训练过程中,并选取分类准确率最高的特征子集作为最优特征子集。最后,基于最优特征子集完成浮选工况的识别。研究结果表明,本方法与其他基准分类算法相比,在分类准确度和时间上都达到了最佳效果,验证了本研究所提出的浮选工况识别方法的有效性。 展开更多
关键词 浮选工况识别 泡沫图像特征 k近邻算法 特征加权
下载PDF
基于K近邻色彩迁移算法的数字调色方法研究
12
作者 杨岚彬 姚正安 《现代电影技术》 2024年第9期26-32,共7页
色彩是电影中必不可少的元素,其能给予观众视觉冲击力,是凸显人物性格特征、表达电影主题、营造电影氛围、增强电影故事感的重要手段。在数字电影时代,图像色彩迁移技术为数字电影调色提供了更为便捷的方法。本文提出一种基于K近邻(K⁃Ne... 色彩是电影中必不可少的元素,其能给予观众视觉冲击力,是凸显人物性格特征、表达电影主题、营造电影氛围、增强电影故事感的重要手段。在数字电影时代,图像色彩迁移技术为数字电影调色提供了更为便捷的方法。本文提出一种基于K近邻(K⁃Nearest Neighbor,KNN)回归模型的图像色彩迁移算法KNN⁃1,同时基于目标图像的全局统计量特征与局部像素特征,提出了先采用该算法后采用经典Reinhard色彩迁移算法的KNN⁃2算法与先采用Rein⁃hard算法再采用该算法的KNN⁃3算法。结果表明,基于K近邻回归模型的色彩迁移算法所得到结果图颜色与目标图像相似,但是整体颜色偏浅,亮度较亮。KNN⁃2、KNN⁃3算法得到的迁移结果图的效果都较K近邻、Reinhard两种算法单独使用有明显提升,迁移结果图整体色彩基调与目标图像更为相似。 展开更多
关键词 数字电影 色彩空间 色彩迁移算法 k近邻回归模型
下载PDF
融合稀疏约束的双向k近邻粗糙集模型
13
作者 樊晓雪 尹涛 +2 位作者 陆杨 鞠恒荣 丁卫平 《小型微型计算机系统》 CSCD 北大核心 2024年第10期2370-2377,共8页
k近邻粗糙集作为邻域粗糙集的拓展,被广泛应用于知识发现等领域.k近邻粗糙集模型的粒度构建是选取最近的k个样本.然而,传统k近邻粒度不能有效处理样本分布不均匀的数据.此外,单向粒度构建方法也会导致部分离群点被归入到粒度模型中,增... k近邻粗糙集作为邻域粗糙集的拓展,被广泛应用于知识发现等领域.k近邻粗糙集模型的粒度构建是选取最近的k个样本.然而,传统k近邻粒度不能有效处理样本分布不均匀的数据.此外,单向粒度构建方法也会导致部分离群点被归入到粒度模型中,增加了粒度的不确定性.为了解决上述问题,提升粒度模型的稳定性,本文提出了一种融合稀疏约束的双向k近邻粗糙集模型.首先,通过稀疏约束模型刻画样本之间联系,选取紧密关联的样本构造稀疏双向k近邻粒度.然后,基于双向互邻信息策略,剔除模型中不符合该策略的样本.最后,通过条件熵与互信息熵刻画粒度的不确定性程度.UCI数据集的实验结果证明,本文提出的融合稀疏约束的双向k近邻粗糙集模型能够降低信息的不确定性,也为k近邻粗糙集模型的改进提供了新的方向. 展开更多
关键词 k近邻粗糙集 稀疏约束 双向策略 条件熵 互信息熵
下载PDF
面向动态路网的移动对象分布式k近邻查询算法
14
作者 陈国祥 于自强 赵浩宇 《计算机应用》 CSCD 北大核心 2024年第11期3403-3410,共8页
动态路网k近邻(kNN)查询是许多基于位置的服务(LBS)中的一个重要问题。针对该问题,提出一种面向动态路网的移动对象分布式kNN查询算法DkNN(Distributed kNN)。首先,将整个路网划分为部署于集群中不同节点中的多个子图;其次,通过并行地... 动态路网k近邻(kNN)查询是许多基于位置的服务(LBS)中的一个重要问题。针对该问题,提出一种面向动态路网的移动对象分布式kNN查询算法DkNN(Distributed kNN)。首先,将整个路网划分为部署于集群中不同节点中的多个子图;其次,通过并行地搜索查询范围所涉及的子图得到精确的kNN结果;最后,优化查询的搜索过程,引入查询范围剪枝策略和查询终止策略。在4个道路网络数据集上与3种基线算法进行了充分对比和验证。实验结果显示,与TEN~*-Index(Tree dEcomposition based kNN~*Index)算法相比,DkNN算法的查询时间减少了56.8%,路网更新时间降低了3个数量级。DkNN算法可以快速响应动态路网中的kNN查询请求,且在处理路网更新时具有较低的更新成本。 展开更多
关键词 动态道路网络 k近邻查询 分布式环境 基于位置的服务 时空数据处理
下载PDF
基于K近邻搜索的卷烟品牌区域偏好研究
15
作者 刘晓迪 罗燕雄 何振峰 《科技与创新》 2024年第20期7-12,共6页
烟草数字营销领域的研究正围绕数据、内容和触点全面展开。烟草营销是产业数字化应用的重点领域。目前烟草行业卷烟品牌培育与卷烟营销等数字化产品已经得到了一定的应用,但是对于数据的分析、再加工等深入分析却略显不足。首先,了解卷... 烟草数字营销领域的研究正围绕数据、内容和触点全面展开。烟草营销是产业数字化应用的重点领域。目前烟草行业卷烟品牌培育与卷烟营销等数字化产品已经得到了一定的应用,但是对于数据的分析、再加工等深入分析却略显不足。首先,了解卷烟消费情况,并使用回归模型进行分析,统计商户的各项指标,分析不同区域卷烟的销售、培育情况,进行特征工程提取,获得品牌的地理位置信息,利用K近邻算法进行聚类,形成具有营销特征的客户分类;其次,构建卷烟品牌区域偏好地图,利用GIS技术形成卷烟销售数据的热力图、云地图和知识地图,用以进行品牌偏好分析和培育管理。研究对企业的生产实践有较强的指导意义。 展开更多
关键词 卷烟品牌营销 区域偏好分析 特征工程 k近邻搜索
下载PDF
基于量子K近邻分类算法的软件应用层接口数据分析方法
16
作者 韩亦睿 《软件》 2024年第7期59-61,共3页
由于软件应用层接口数据的分布具有星散分布的特点,因此,分析数据判断接口状态时,对应的可靠性难以得到保障。为此,本文提出基于量子K近邻分类算法的软件应用层接口数据分析方法。将接口数据的特征映射到量子比特后,使用量子态编码具体... 由于软件应用层接口数据的分布具有星散分布的特点,因此,分析数据判断接口状态时,对应的可靠性难以得到保障。为此,本文提出基于量子K近邻分类算法的软件应用层接口数据分析方法。将接口数据的特征映射到量子比特后,使用量子态编码具体的接口数据。在分析阶段,采用交叉验证的方式确定最佳K值,并选择曼哈顿距离作为衡量数据点之间相似性的基准,设置分类中心为软件应用层接口数据分析的目标状态参数,根据量子化软件应用层接口数据与状态分类中心的距离,完成数据分析。测试结果表明,设计方法对于软件应用层接口状态的分析结果与监测值具有较高的拟合度。 展开更多
关键词 量子k近邻分类算法 软件应用层接口数据 量子比特 k
下载PDF
结合动态特征矩阵与k近邻的风电机组故障检测方法
17
作者 李立洋 《中文科技期刊数据库(引文版)工程技术》 2024年第10期0157-0160,共4页
本文对结合动态特征矩阵与k近邻算法的风电机组故障检测方法进行了研究,通过实时监测风电机组运行数据来构建动态特征矩阵,并利用k近邻算法对动态特征矩阵进行分类和识别故障模式,从而有效地提高风电机组的运行可靠性和维护效率,为风电... 本文对结合动态特征矩阵与k近邻算法的风电机组故障检测方法进行了研究,通过实时监测风电机组运行数据来构建动态特征矩阵,并利用k近邻算法对动态特征矩阵进行分类和识别故障模式,从而有效地提高风电机组的运行可靠性和维护效率,为风电机组的智能监测和故障诊断提供一种新的技术手段,具有广泛的应用前景。对实验结果进行分析表明,该方法在故障检测的精确性和实时性上均表现出明显的优势。因此,本研究为风电机组的智能化监控和故障诊断提供了一条新的途径,为降低风电并网对环境的影响提供了有效保障。 。 展开更多
关键词 动态特征矩阵 k近邻算法 风电机组 故障检测 智能监测
下载PDF
基于相互K近邻的密度峰值聚类算法
18
作者 赵志忠 陈素根 《安庆师范大学学报(自然科学版)》 2024年第2期41-46,共6页
密度峰值聚类是一种原理简单、运行高效的聚类算法,但其存在密度定义方式不统一、聚类中心选择容易出错和样本分配可能产生“多米诺”现象等问题。针对上述问题,提出一种基于相互K近邻的密度峰值聚类算法(MKDPC)。首先,基于样本的相互K... 密度峰值聚类是一种原理简单、运行高效的聚类算法,但其存在密度定义方式不统一、聚类中心选择容易出错和样本分配可能产生“多米诺”现象等问题。针对上述问题,提出一种基于相互K近邻的密度峰值聚类算法(MKDPC)。首先,基于样本的相互K近邻定义一种改进的局部密度,统一了DPC算法密度定义方式,能够有效避免变密度数据集聚类中心选择出错的问题;其次,基于相互K近邻定义了样本间的共享相互K近邻和相似度,进而提出一种样本多步分配策略,该策略可以有效克服样本分配过程中的“多米诺”现象。在人工数据集和真实数据集上进行实验,并将MKDPC算法与其他4种算法进行比较,验证了所提MKDPC算法的有效性。 展开更多
关键词 密度峰值聚类 相互k近邻 局部密度 分配策略
下载PDF
基于K近邻算法的主机异常行为检测
19
作者 黄智睿 谢显杰 杨晓丹 《无线互联科技》 2024年第5期122-128,共7页
基于主机异常的入侵检测方法可以识别用户操作是否存在异常,从而提醒用户进行处理以保证系统安全。为了能够快速高效地识别用户操作异常,文章提出了基于K近邻算法的主机异常检测方法。该方法首先在特征提取过程中使用自然语言处理的算... 基于主机异常的入侵检测方法可以识别用户操作是否存在异常,从而提醒用户进行处理以保证系统安全。为了能够快速高效地识别用户操作异常,文章提出了基于K近邻算法的主机异常检测方法。该方法首先在特征提取过程中使用自然语言处理的算法来提取特征向量,然后采用主成分分析算法进行降维处理,接着使用K近邻算法学习主机的正常操作和异常操作的相关特征,建立检测模型,最后使用学习后建立的模型来判断主机是否存在异常操作。该方法采用澳大利亚国防学院的ADFA-LD数据集进行实验,验证了所提出方法性能良好。 展开更多
关键词 网络空间安全 机器学习 主机异常检测 k近邻算法 自然语言处理
下载PDF
融合模糊K近邻及证据理论的变压器油纸绝缘状态评估方法 被引量:10
20
作者 邹阳 俞豪奕 金涛 《电力系统保护与控制》 EI CSCD 北大核心 2023年第14期55-63,共9页
为实现“双碳”目标,构建新型电力系统已成为电网发展的必然趋势。在此背景下,保障电力变压器的可靠运行具有重要意义。鉴于此,提出融合模糊K近邻(fuzzy K-nearest neighbor,FKNN)及证据理论的变压器油纸绝缘状态评估方法。首先,构建基... 为实现“双碳”目标,构建新型电力系统已成为电网发展的必然趋势。在此背景下,保障电力变压器的可靠运行具有重要意义。鉴于此,提出融合模糊K近邻(fuzzy K-nearest neighbor,FKNN)及证据理论的变压器油纸绝缘状态评估方法。首先,构建基于回复电压法的多特征参量数据库,并基于数据库提出证据的基本概率分配方法。而后,采用组合赋权法综合特征参量的主观权重及客观权重,同时藉由证据折扣因子对证据基本概率进行再分配,避免D-S证据理论的冲突问题。最终,对各证据进行融合推理,获得绝缘状态命题的置信水平。利用提出的方法对变压器实测数据进行验证。结果表明,绝缘状态的置信分布式结果不仅能够准确反映变压器油纸绝缘状态,也能表征出变压器油纸绝缘的劣化趋势,为电力变压器检修策略制定提供了指导。 展开更多
关键词 油纸绝缘 模糊k近邻 D-S证据理论 回复电压 状态综合评估
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部