For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i...For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy.展开更多
研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首...研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首先,对缸体振动信号进行稀疏分解,得到涵盖爆震特征的稀疏字典以及针对单个信号的稀疏系数;然后,计算重构信号的四阶累积量的自然对数,提出了一种爆震强度评价指标。计算结果表明,该方法对于混有强烈背景噪声的缸体振动信号表现出了良好的降噪和特征提取能力,且提高了运算效率,能够准确区分强烈爆震、轻微爆震和正常燃烧3种状态,证明了该方法在发动机爆震识别领域的应用价值。展开更多
压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测...压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 d B。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。展开更多
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ...The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.展开更多
基金National Natural Science Foundation of China(No.51467008)。
文摘For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy.
文摘研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首先,对缸体振动信号进行稀疏分解,得到涵盖爆震特征的稀疏字典以及针对单个信号的稀疏系数;然后,计算重构信号的四阶累积量的自然对数,提出了一种爆震强度评价指标。计算结果表明,该方法对于混有强烈背景噪声的缸体振动信号表现出了良好的降噪和特征提取能力,且提高了运算效率,能够准确区分强烈爆震、轻微爆震和正常燃烧3种状态,证明了该方法在发动机爆震识别领域的应用价值。
文摘压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 d B。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。
基金Project(51875481) supported by the National Natural Science Foundation of ChinaProject(2682017CX011) supported by the Fundamental Research Foundations for the Central Universities,China+2 种基金Project(2017M623009) supported by the China Postdoctoral Science FoundationProject(2017YFB1201004) supported by the National Key Research and Development Plan for Advanced Rail Transit,ChinaProject(2019TPL_T08) supported by the Research Fund of the State Key Laboratory of Traction Power,China
文摘The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.