期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations
1
作者 Zhifeng Xu Jiyin Cao +2 位作者 Gang Zhang Xuyong Chen Yushun Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期306-313,共8页
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand... This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability. 展开更多
关键词 Active learning Monte-carlo simulation k-nearest neighbors Reliability estimation CLASSIFICATION
下载PDF
GHM-FKNN:a generalized Heronian mean based fuzzy k-nearest neighbor classifier for the stock trend prediction
2
作者 吴振峰 WANG Mengmeng +1 位作者 LAN Tian ZHANG Anyuan 《High Technology Letters》 EI CAS 2023年第2期122-129,共8页
Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-n... Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-nearest neighbor(KNN), and fuzzy KNN(FKNN), have difficulty in accurately predicting the stock trend(uptrend or downtrend) for a given date, a generalized Heronian mean(GHM) based FKNN predictor named GHM-FKNN was proposed.GHM-FKNN combines GHM aggregation function with the ideas of the classical FKNN approach.After evaluation, the comparison results elucidated that GHM-FKNN outperformed the other best existing methods RF, PRF, KNN and FKNN on independent test datasets corresponding to three stocks, namely AAPL, AMZN and NFLX.Compared with RF, PRF, KNN and FKNN, GHM-FKNN achieved the best performance with accuracy of 62.37% for AAPL, 58.25% for AMZN, and 64.10% for NFLX. 展开更多
关键词 stock trend prediction Heronian mean fuzzy k-nearest neighbor(FKNN)
下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
3
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(KNN) principal component analysis(PCA) time series
下载PDF
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm
4
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(KNN) disc space variation(DSV)
下载PDF
RecBERT:Semantic recommendation engine with large language model enhanced query segmentation for k-nearest neighbors ranking retrieval
5
作者 Richard Wu 《Intelligent and Converged Networks》 EI 2024年第1期42-52,共11页
The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging... The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging,relying on administrators to label the features of a class,or story,which a user comment corresponds to.Another common approach is to use pre-trained word embeddings to compare class descriptions for textual similarity,then use a distance metric such as cosine similarity or Euclidean distance to find top k neighbors.However,neither approach is able to fully utilize this user-generated unstructured natural language data,reducing the scope of these recommendation systems.This paper studies the application of domain adaptation on a transformer for the set of user comments to be indexed,and the use of simple contrastive learning for the sentence transformer fine-tuning process to generate meaningful semantic embeddings for the various user comments that apply to each class.In order to match a query containing content from multiple user comments belonging to the same class,the construction of a subquery channel for computing class-level similarity is proposed.This channel uses query segmentation of the aggregate query into subqueries,performing k-nearest neighbors(KNN)search on each individual subquery.RecBERT achieves state-of-the-art performance,outperforming other state-of-the-art models in accuracy,precision,recall,and F1 score for classifying comments between four and eight classes,respectively.RecBERT outperforms the most precise state-of-the-art model(distilRoBERTa)in precision by 6.97%for matching comments between eight classes. 展开更多
关键词 sentence transformer simple contrastive learning large language models query segmentation k-nearest neighbors
原文传递
FLOCKING OF A THERMODYNAMIC CUCKER-SMALE MODEL WITH LOCAL VELOCITY INTERACTIONS
6
作者 金春银 李双智 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期632-649,共18页
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe... In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate. 展开更多
关键词 FLOCKING local interaction thermodynamical Cucker-Smale model stochastic matrix neighbor graph
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
7
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-nearest neighbor and Mean imputation
下载PDF
Propagation Path Loss Models at 28 GHz Using K-Nearest Neighbor Algorithm
8
作者 Vu Thanh Quang Dinh Van Linh To Thi Thao 《通讯和计算机(中英文版)》 2022年第1期1-8,共8页
In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based o... In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based on the experimental data.The algorithm is performed by choosing k nearest points and training dataset to find the optimal k value.The proposed method is applied to impove and adjust pathloss model at 28 GHz in Keangnam area,Hanoi,Vietnam.The experiments in both line-of-sight and non-line-of-sight scenarios used many combinations of transmit and receive antennas at different transmit antenna heights and random locations of receive antenna have been carried out using Wireless Insite Software.The results have been compared with 3GPP and NYU Wireless Path Loss Models in order to verify the performance of the proposed approach. 展开更多
关键词 k-nearest neighbor regression 5G millimeter waves path loss
下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
9
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
下载PDF
Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico 被引量:3
10
作者 Carlos A AGUIRRE-SALADO Eduardo J TREVIO-GARZA +7 位作者 Oscar A AGUIRRE-CALDERóN Javier JIMNEZ-PREZ Marco A GONZLEZ-TAGLE José R VALDZ-LAZALDE Guillermo SNCHEZ-DíAZ Reija HAAPANEN Alejandro I AGUIRRE-SALADO Liliana MIRANDA-ARAGóN 《Journal of Arid Land》 SCIE CSCD 2014年第1期80-96,共17页
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s... As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+). 展开更多
关键词 k-nearest neighbor Mahalanobis most similar neighbor MODIS BRDF-adjusted reflectance forest inventory the policy of Reducing Emission from Deforestation and Forest Degradation
下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
11
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
下载PDF
Pruned fuzzy K-nearest neighbor classifier for beat classification 被引量:2
12
作者 Muhammad Arif Muhammad Usman Akram Fayyaz-ul-Afsar Amir Minhas 《Journal of Biomedical Science and Engineering》 2010年第4期380-389,共10页
Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats... Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data. 展开更多
关键词 ARRHYTHMIA ECG k-nearest neighbor PRUNING FUZZY Classification
下载PDF
A Short-Term Traffic Flow Forecasting Method Based on a Three-Layer K-Nearest Neighbor Non-Parametric Regression Algorithm 被引量:7
13
作者 Xiyu Pang Cheng Wang Guolin Huang 《Journal of Transportation Technologies》 2016年第4期200-206,共7页
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting... Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting. 展开更多
关键词 Three-Layer Traffic Flow Forecasting k-nearest neighbor Non-Parametric Regression
下载PDF
A Novel Neighbor-Preferential Growth Scale-Free Network Model and its Properties 被引量:1
14
作者 Yongshang Long Zhen Jia 《Communications and Network》 2017年第2期111-123,共13页
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its... In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network. 展开更多
关键词 NETWORK model neighbor-Preferential SCALE-FREE SMALL-WORLD
下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
15
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
下载PDF
Efficient Parallel Processing of k-Nearest Neighbor Queries by Using a Centroid-based and Hierarchical Clustering Algorithm
16
作者 Elaheh Gavagsaz 《Artificial Intelligence Advances》 2022年第1期26-41,共16页
The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a cer... The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance. 展开更多
关键词 CLASSIFICATION k-nearest neighbor Big data CLUSTERING Parallel processing
下载PDF
Unveiling the Predictive Capabilities of Machine Learning in Air Quality Data Analysis: A Comparative Evaluation of Different Regression Models
17
作者 Mosammat Mustari Khanaum Md Saidul Borhan +2 位作者 Farzana Ferdoush Mohammed Ali Nause Russel Mustafa Murshed 《Open Journal of Air Pollution》 2023年第4期142-159,共18页
Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for rep... Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers. 展开更多
关键词 Regression Analysis Air Quality Index Linear Discriminant Analysis Quadratic Discriminant Analysis Logistic Regression k-nearest neighbors Machine Learning Big Data Analysis
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
18
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
原文传递
邻近木多样性与竞争对天然云冷杉林树木生长的影响
19
作者 杜宇 杨华 +2 位作者 贺丹妮 陈庆国 张晓红 《北京林业大学学报》 CAS CSCD 北大核心 2024年第8期111-121,共11页
【目的】探究天然云冷杉林邻近木多样性、竞争强度对林木生长的影响,为云冷杉林结构化经营和管理提供科学依据。【方法】选取长白山天然云冷杉林2015、2018年两期固定样地调查数据,基于结构方程模型分析邻近木多样性、竞争与树木生长的... 【目的】探究天然云冷杉林邻近木多样性、竞争强度对林木生长的影响,为云冷杉林结构化经营和管理提供科学依据。【方法】选取长白山天然云冷杉林2015、2018年两期固定样地调查数据,基于结构方程模型分析邻近木多样性、竞争与树木生长的关系。【结果】(1)研究区内天然云冷杉林的邻近木树种、径阶、树高多样性指数均集中在1.04处,3个多样性指数整体上分布均匀,树种混交度高,林分结构复杂。(2)结构方程模型中,树种、径阶、树高3个邻近木多样性指数和竞争指数对材积生长量的总影响系数分别为-0.001、0.166、0.073和-0.489,结果表明竞争是影响林木生长的关键因素。(3)径阶和树高多样性的增加对生长量均为正面影响,其中径阶多样性为直接影响,树高多样性为间接影响;树种多样性表现为直接的负面影响与间接的正面影响,总体为负面影响;此外,树种多样性的提高可以减少林木间的竞争强度,树高多样性的提高可能会导致林分结构的分化,进而促进林分中林木个体的生长。(4)研究区内林木的生长压力可能多来自于同径级林木,小径级林木生长状况较差且竞争压力较大,大中径级林木与之相反。【结论】择伐同径级或相近径级林木,同时提高林分内的径阶、树高多样性水平,可以降低林木竞争水平,促进林木个体生长,进而提高云冷杉林林分生产力。 展开更多
关键词 森林管理 采伐 结构方程模型 邻近木多样性指数 竞争 林木生长
下载PDF
RM-RT^(2)NI:融合评论时效与可信近邻影响力的推荐模型
20
作者 韩志耕 周婷 +2 位作者 陈耿 付纯硕 陈健 《计算机科学》 CSCD 北大核心 2024年第S01期700-706,共7页
基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近... 基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近邻影响力,无法获得更丰富的用户和物品特征。为进一步提高推荐精度,提出了融合评论时效与可信近邻影响力的推荐模型RM-RT^(2)NI。基于评分矩阵,该模型使用矩阵分解提取了用户偏好和物品属性的浅层特征,利用云模型和修正的用户相似度评估模型和新构建的信度评估模型提取出可信近邻影响力;基于评论文本,该模型利用BERT模型获得每条评论的隐表达,利用双向GRU提取评论间的联系,利用新构建的融合时间因子的注意力机制识别各评论的时效贡献度,以获取用户和物品的深层特征。在此基础上,将用户浅层特征、深层特征以及可信近邻影响力特征融合成用户特征,将物品浅层特征和深层特征融合成物品特征,并将它们输入全连接神经网络以预测用户-物品评分。在5组公开数据集上对RM-RM-RT^(2)NI的推荐性能进行了实验评估,结果显示,与7个基线模型相比,RM-RT^(2)NI具有更高的评分预测精度,且RMSE平均降低了3.0657%。 展开更多
关键词 推荐模型 评分矩阵 评论文本 评论时效 可信近邻影响力 多特征融合
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部