股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半...股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。展开更多
In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.T...In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.展开更多
文摘股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。
基金The authors gratefully acknowledge the support provided by the Postgraduate Research&Practice Program of Jiangsu Province(Grant No.KYCX18_0526)the Fundamental Research Funds for the Central Universities(Grant No.2018B682X14)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110807).
文摘In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.