The authors develop a direct approach to the soliton perturbation based on the separation of variables. With the aid of approach, the first-order effects of perturbation on a KdV-MKdV soliton are derived, both the slo...The authors develop a direct approach to the soliton perturbation based on the separation of variables. With the aid of approach, the first-order effects of perturbation on a KdV-MKdV soliton are derived, both the slow time-dependence of the soliton parameters and the first-order correction are obtained.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
基金the National Science Foundation of China(19775013)
文摘The authors develop a direct approach to the soliton perturbation based on the separation of variables. With the aid of approach, the first-order effects of perturbation on a KdV-MKdV soliton are derived, both the slow time-dependence of the soliton parameters and the first-order correction are obtained.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.