Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting control...Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting controlled experiments with a single variable is challenging for natural shales due to their high variations in components,diagenesis conditions,or pore fluid.We employed the hot-pressing technique to construct 11 well-controlled artificial shale with varying KC.These artificial shale samples were successive machined into prismatic shape for ultrasonic measurements along different directions.Observations revealed bedding perpendicular P-wave velocities are more sensitive to the increasing KC than bedding paralleling velocities due to the preferential alignments of kerogen.All elastic stiffnesses except C_(13)are generally decreasing with the increasing KC,the variation of C_(1) and C_(33)on kerogen content are more sensitive than those of C_(44)and C_(66).Apparent dynamic mechanical parameters(v and E)were found to have linear correlation with the true ones from complete anisotropic equations independent of KC,which hold value towards the interpretation of well logs consistently across formations,Anisotropic mechanical parameters(ΔE and brittlenessΔB)tend to decrease with the reducing KC,withΔB showing great sensitivity to KC variations.In the range of low KC(<10%),the V_(P)/V_(S) ratio demonstrated a linearly negative correlation with KC,and the V_(P)/V_(S) ratio magnitude of less than 1.75may serve as a significant characterization for highly organic-rich(>10%)shale,compilation of data from natural organic rich-shales globally verified the similar systematic relationships that can be empirically used to predict the fraction of KC in shales.展开更多
This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Bo...This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Both the Huadian and Maoming shales exhibit immature indicators in extractable and kerogen-bound hopanoids(notably,high abundance of C_(29)to C_(32)17β,21β-hopanes and unsaturated hopenes).In contrast,the Fushun oil shale's hopanoids from extracts and pyrolyzates suggest a higher maturity level.The absence of neohopenes in the pyrolyzates of the shales underpins that the kerogenbound hopanoid skeletons resist rearrangement.However,the Huadian oil shale's asymmetric distribution of C_(29)and C_(30)hopenes and neohopenes hints at the presence of an additional source.Novel unsaturated hopenes,such as hop-20(21)-enes,identified in pyrolyzates of the three kerogens at various pyrolysis temperatures,reveal the occurrence of double bonds in kerogen-bound hopanoid skeletons without methyl rearrangements.The absence of hop-20-(21)-ene in extracts suggests that it might act as an intermediate of these novel hopenes during the epimerization of hopanoid skeletons within kerogen.The extractable and pyrolytic hopanoids'stereochemical alignment indicates that epimerization may occur in both ring systems and alkyl side chains of kerogen-bound hopanoid skeletons.Sequential stepwise pyrolysis proves to be a quick screening method for geological hopanoids without causing any significant alteration to the original skeletons even when cracking multiple covalent bonds is necessary.展开更多
Some trace elements(TEs),both bio-essential and redox-sensitive,are promising tracers of Earth’s surface processes.As an essential sedimentary organic matter,kerogen may have inherited and retained the key TEs from o...Some trace elements(TEs),both bio-essential and redox-sensitive,are promising tracers of Earth’s surface processes.As an essential sedimentary organic matter,kerogen may have inherited and retained the key TEs from organisms.In this study,the distribution of TEs in kerogens from two sections(Dongkanshang and Fengtan) in South China was analyzed to explore its biogeochemical significance during Ediacaran-Lower Cambrian.Compared with V and Zn,the relative concentrations of Co,Ni,Cu,and Mo were generally higher in kerogens than in the whole rocks.Enrichment of TEs in the kerogen was involved in the selective utilization of TEs by different organic precursors and the competition of sulfide in the depositional environment.The significant content of TEs in the kerogens from deep-water facies corresponded to a more negative δ^(13) Ckeras a result of the dominant taxa of chemo autotrophs with tremendous bioaccumulation potential for trace metals and the reduction conditions favorable for organic matter preservation.Furthermore,the content variations of trace elements in the kerogens coincided with the rise and fall of the Ediacaran biota,implying that the trace elements might have played an important role in early life evolution.展开更多
Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-li...Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-line detection of gas chromatography-mass spectrometry(GC-MS).Occluded fractions(bitumenⅡ)released at low-temperature steps(≥410℃)show consistent biodegradative signatures with that reported for solvent-extracted fractions(bitumenⅠ)of the original shales,e.g.,broad range of abundant n-alkanes,isoprenoids and regular hopanes for the non-biodegraded JJZG-1;trace n-alkanes and abundant hopanes for the moderately biodegraded JJZG-2;and no n-alkanes but still prominent hopanes including the microbially produced 25-nohopanes for the severely biodegraded JJZG-3.This consistency between bitumenⅡand bitumenⅠfractions indicates the biodegradability of the kerogenoccluded bitumenⅡwith limited protection from host kerogen.A minor level of protection was suggested by the trace distribution of n-alkanes in the bitumenⅡof JJZG-2,whereas the bitumenⅠhad no nalkanes.The kerogen itself was more resistant to biodegradation as reflected by the persistence of high abundances of both n-alkanes and hopanes in the high temperature(≥460℃)products of all three kerogen samples.However,the relative abundances of these product groups did show some evidence of biodegradation alteration,e.g.,ratios of n-C_(15)alkene/C_(27)hop-17(21)-ene at 510℃pyrolysis decreased by order of magnitude from the non-biodegraded(JJZG-1=27.4)to highly biodegraded(0.3 for JJZG-3)samples.The reduced biodegradation impact on the kerogen fraction(Cf.bitumen fractions)was also evident by the absence of 25-norhopanes in the high-temperature analysis of the JJZG-3 kerogen.展开更多
Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D sc...Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D scanning confocal microscopy,scanning electron microscopy(SEM),X-ray nano-computed tomography(nano-CT),and low-pressure N2 adsorption analysis to analyze the pore structures of the shale.Additionally,the adsorption behavior of methane on shales with different pore structures is investigated by molecular simulations.The results show that the SEM image of the shale sample obviously displays four different pore shapes,including slit pore,square pore,triangle pore,and circle pore.The average coordination number is 4.21 and the distribution of coordination numbers demonstrates that pores in the shale have high connectivity.Compared with the adsorption capacity of methane on triangle pores,the adsorption capacity on slit pore,square pore,and circle pore are reduced by 9.86%,8.55%,and 6.12%,respectively.With increasing pressure,these acute wedges fill in a manner different from the right or obtuse angles in the other pores.This study offers a quantitative understanding of the effect of pore structure on methane adsorption in the shale and provides better insight into the evaluation of gas storage in geologic shale reservoirs.展开更多
Kerogen plays an important role in shale gas adsorption,desorption and diffusion.Therefore,it is necessary to characterize the molecular structure of kerogen.In this study,four kerogen samples were isolated from the o...Kerogen plays an important role in shale gas adsorption,desorption and diffusion.Therefore,it is necessary to characterize the molecular structure of kerogen.In this study,four kerogen samples were isolated from the organic-rich shale of the Longmaxi Formation.Raman spectroscopy was used to determine the maturity of these kerogen samples.Highresolution transmission electron microscopy(HRTEM),13 C nuclear magnetic resonance(13 C NMR),X-ray diffraction(XRD)and Fourier transform infrared(FT-IR)spectroscopy were conducted to characterize the molecular structure of the shale samples.The results demonstrate that VReqv of these kerogen samples vary from 2.3%to 2.8%,suggesting that all the kerogen samples are in the dry gas window.The macromolecular carbon skeleton of the Longmaxi Formation kerogen is mainly aromatic(fa’=0.56).In addition,the aromatic structural units are mainly composed of naphthalene(23%),anthracene(23%)and phenanthrene(29%).However,the aliphatic structure of the kerogen macromolecules is relatively low(fal*+falH=0.08),which is presumed to be distributed in the form of methyl and short aliphatic chains at the edge of the aromatic units.The oxygen-containing functional groups in the macromolecules are mainly present in the form of carbonyl groups(fac=0.23)and hydroxyl groups or ether groups(falO=0.13).The crystallite structural parameters of kerogen,including the stacking height(Lc=22.84?),average lateral size(La=29.29?)and interlayer spacing(d002=3.43?),are close to the aromatic structural parameters of anthracite or overmature kerogen.High-resolution transmission electron microscopy reveals that the aromatic structure is well oriented,and more than 65%of the diffractive aromatic layers are concentrated in the main direction.Due to the continuous deep burial,the longer aliphatic chains and oxygen-containing functional groups in the kerogen are substantially depleted.However,the ductility and stacking degree of the aromatic structure increases during thermal evolution.This study provides quantitative information on the molecular structure of kerogen samples based on multiple research methods,which may contribute to an improved understanding of the organic pores in black shale.展开更多
Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil...Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.展开更多
Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially f...Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially for source rocks which have high-over level of thermal maturity. Systematic identification of original organism assemblages of the Lower Paleozoic potential source rocks and detailed carbon isotopic composition of kerogen analyses were conducted for four outcrop sections in the Tarim basin. Results indicated that the original organism assemblages of the lower part of the Lower Cambrian were composed mainly of benthic algae, whereas those of the Upper Cambrian and the Ordovician were characterized by planktonic algae. Kerogen carbon isotopic data demonstrated that the δ13 Ckerogen values of source rocks dominated by benthic algae are lower than-34‰, whereas the δ13 Ckerogen values of source rocks dominated by planktonic algae are higher than-30‰ in general. We tentatively suggested that the carbon species those are utilized by algae and the carbon isotopic fractionation during photosynthesis are the major controls for the δ13 Ckerogen values in the Lower Paleozoic source rocks in the Tarim basin. Correlating the δ13 C values of oils exploited in the Tarim basin, the original organism assemblages, and δ13 Ckerogen values of source rocks, it implied that the Lower Paleozoic oils exploited in the Tarim basin should be sourced from the source rocks with original organism assemblages dominated by planktonic algae, and the hydrocarbon sourced from the Cambrian benthic algae should be of great exploration potential in future. Original organism assemblages in source rocks can provide important clues for oil-source rocks correlation, especially for the source rocks with high thermal maturity.展开更多
Stimulated shale reservoirs consist of kerogen,inorganic matter,secondary and hydraulic fractures.The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challe...Stimulated shale reservoirs consist of kerogen,inorganic matter,secondary and hydraulic fractures.The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challenging.Here we establish an analytical method that addresses kerogen-inorganic matter gas transfer,dispersed kerogen distribution,and complex gas flow mechanisms to facilitate evaluating gas production.The matrix element is defined as a kerogen core with an exterior inorganic sphere.Unlike most previous models,we merely use boundary conditions to describe kerogen-inorganic matter gas transfer without the instantaneous kerogen gas source term.It is closer to real inter-porosity flow conditions between kerogen and inorganic matter.Knudsen diffusion,surface diffusion,adsorption/desorption,and slip corrected flow are involved in matrix gas flow.Matrix-fracture coupling is realized by using a seven-region linear flow model.The model is verified against a published model and field data.Results reveal that inorganic matrices serve as a major gas source especially at early times.Kerogen provides limited contributions to production even under a pseudo-steady state.Kerogen properties’influence starts from the late matrix-fracture inter-porosity flow regime,while inorganic matter properties control almost all flow regimes except the early-mid time fracture linear flow regime.The contribution of different linear flow regions is also documented.展开更多
High-quality source rocks in saline lacustrine or marine sedimentary environments often show early peak petroleum generation and enhanced hydrocarbon yields,which have conventionally been attributed to organosulfur-en...High-quality source rocks in saline lacustrine or marine sedimentary environments often show early peak petroleum generation and enhanced hydrocarbon yields,which have conventionally been attributed to organosulfur-enhanced thermal decomposition of kero gen.However,there is increasing awareness that the coexisting inorganic salts,particularly sulfates,might also contribute to the acceleration of petroleum generation.In this study,we investigated the influence of sulfates on the thermal decomposition of kerogen sampled from the Pingliang Formation in the Ordos Basin.Our results demonstrate that the kerogen samples mixed with sulfate generate more hydrocarbons with a lower peak production temperature than their sulfate-free counterparts.Detailed chemical analysis revealed that the presence of sulfates significantly facilitated the generation of resins and asphaltenes at temperatures below 350℃,corresponding in our simulations to the early stage of petroleum generation(Easy%R_o <1.0%).We hypothesize that sulfates can promote the fragmentation of kerogen via direct thermochemical oxidation into a complex mixture of bitumen components that consist mostly of compounds typically encountered in the classical resin and asphaltene fractions.The findings reveal a new reaction paradigm between sulfates and organic macromolecules that could offer useful guidance in the exploration for low-maturity oils.展开更多
There is a dearth of information about the distribution of trace elements in kerogen from shale rocks despite several reports on trace element composition in many shale samples. In this study, trace elements in shale ...There is a dearth of information about the distribution of trace elements in kerogen from shale rocks despite several reports on trace element composition in many shale samples. In this study, trace elements in shale rocks and their residual kerogens were determined by inductively coupled plasma–mass spectrometry. The results from this study show redox-sensitive elements relatively concentrated in the kerogens as compared to the shales. This may be primarily due to the adsorption and complexation ability of kerogen, which enables enrichment in Ni, Co, Cu, and Zn. For the rare earth elements(REEs),distinct distribution characteristics were observed for shales dominated by terrigenous minerals and their kerogen counterparts. However, shales with less input of terrigenous minerals showed similar REE distribution patterns to their residual kerogen. It is speculated that the distribution patterns of the REEs in shales and kerogens may be sourcerelated.展开更多
The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Centr...The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Central Kongo(CK)were investigated.X-ray diffraction,Fourier-transform infrared spectroscopy and thermal analysis(TG/DTA)showed that CK oil shale exhibits a siliceous mineral matrix with a consistent organic matter rich in aliphatic chains.The pyrolysis behavior of kerogen revealed the presence of a single mass loss between 300 and 550°C,estimated at 12.5%and attributed to the oil production stage.Non-isothermal kinetics was performed by determining the activation energy using the iterative isoconversional model-free methods and exhibits a constant value with E=211.5±4.7 kJ mol.1.The most probable kinetic model describing the kerogen pyrolysis mechanism was obtained using the Coats–Redfern and Arrhenius plot methods.The results showed a unique kinetic triplet confirming the nature of kerogen,predominantly typeⅠand reinforcing the previously reported geochemical characteristics of the CK oil shale.Besides,the calculation of thermodynamic parameters(ΔH~*,ΔS~*andΔG~*)corresponding to the pyrolysis of typeⅠkerogen revealed that the process is non-spontaneous,in agreement with DTA experiments.展开更多
Biostratigraphy has remained a tool for basin and environmental reconstruction in sedimentology. This study aims to further delineate and classify the lithology, environment of deposition, and the biozonation of micro...Biostratigraphy has remained a tool for basin and environmental reconstruction in sedimentology. This study aims to further delineate and classify the lithology, environment of deposition, and the biozonation of microorganisms found in the studied well. Thirty-four (34) ditch cutting samples from OMA well, offshore Dahomey Basin, were considered for their textural and palynomorphs/palynofacies characterization. The samples were observed and processed according to the standard palynological procedure for geologic samples using hydrochloric and hydrofluoric acid digestion. The stratigraphic sequence of the well ranges from shale to sandstone to argillaceous sandstone. The shales appear highly fissile and laminated in all shades of grey and black while the sandstone colour ranges from light-grey/brown to brown and very deep brown. The sandstone contains some mica flakes and likely pyrites in fine-medium, sub-angular to rounded grains. A total of 28 diverse palynomorphs were reported from the palynological analysis with low abundance. The low recovery of pollens was likely due to limited terrestrial influence and the reasonable amount of dinoflagellate cysts and microforaminifera wall present indicated a marginal marine to a distal offshore environment. Two zones correlated for this study are Danea mutabilis (Early Paleocene) and Dinogymnium euclaense (Upper Maastrichtian) zones. Palynomaceral classifications through visual, microscopic kerogen assessment resulted in high preservation of organic matter which suggests a reducing environment of deposition. The dominances of 48% amorphous (I), and 36% exinite (II), with a considerable amount of the 5% vitrinite (III), and 11% inertinite (IV) kerogen types, indicate that the organic matter is mainly sapropelic and mixed humic-sapropelic types which are favorable for hydrocarbon generation and primarily of marine origin. The spores/pollen colour ranges from light yellow/brown, brown transitioning into darker brown on a scale of 4/5 transitioning to 5/6. Medium degree of maturation (4/5) to late degree (6/7) of maturation was inferred. The studied interval of the OMA well sediments agrees with the established stratigraphic interval of the offshore, Dahomey basin, within the Upper Maastrichtian to Late Paleocene age range and supports high preservation of organic matter sufficient and mature enough to generate hydrocarbon.展开更多
In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/...In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.展开更多
An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for t...An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for the sediments studied, with considerable influx of continental organic matter that were accumulated during the Cenomanian-Turonian age. With reference to the lithostratigraphic profile of the Douala/Kribi-Campo Basin, the age obtained reveals that the sedimentary sections studied belong particularly to the lower section of the Logbadjeck/Mungo River Formation, based on the following benthic foraminifera assemblage: Ammobaculites jessensis, Ammobaculites benuensis, Ammobaculites coprolithiformis, Ammotium cf nkalagum, Ammotium nwalum, Haplophragmoides cf beuchensis, Trochamina taylorana. A particularly very poor palynomorph assemblage was recovered and included no age diagnostic species: Acrostichum aureum, Lycopodiumsporites sp., Fungal spore, Lavigatosporites discordatus, Longapertites sp., Verrucosisporites sp. An organic petrographic analysis performed on these samples revealed Kerogen Type-II and Type-III. The entire data sets obtained from this area is remarkably poor and we suspect poor preservation as the cause viewing the extent of weathering. The paleo-depositional environment of these sediments was suggested both from the foraminifera and palynomorphs present and confirmed from the organic matter types and macrofossil contents. The studied sections are composed generally of dark to dark-gray shale beds. As one of the petroleum producing basins within the Gulf of Guinea in which exploration/exploitation activities are on-going, the current research is aim at providing more data useful in the continuous search for more potential source rocks in this basin.展开更多
In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil ...In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil shale increases the intensity of the peaks in the X-ray diffractograms.Infrared spectra and X-ray diffractograms reveal the presence of mineral,calcite,quartz,kaolinite,and pyrite in the mineral matrix of the oil shale.Hydrochloric and hydrofluoric acids dissolution do not alter the organic matter.The nonisothermal weight loss measurements indicate that thermal decomposition of the isolated kerogen can be described by first-order reaction.A single kinetic expression is valid over the temperature range of kerogen pyrolysis between 433K and 873K.Furthermore,the results indicate that the removal of mineral matter causes a decrease in the activation energies of the pyrolysis reactions of oil shale.展开更多
Thirty-seven Kupferschiefer samples from southwestern Poland were analyzed by microscopy, Rock-Eval approach and instrumental neutron activation analysis to understand the geochemical and morphological characteristics...Thirty-seven Kupferschiefer samples from southwestern Poland were analyzed by microscopy, Rock-Eval approach and instrumental neutron activation analysis to understand the geochemical and morphological characteristics of kerogen present in the samples. The analytical results indicate that there are two different types of kerogens. One type was only subjected to thermal alteration processes, and the other was further oxidized after deposition of the sediment. In the oxidized samples migrabitumen was transformed into pyrobitumen. Rock\|Eval analyses show a significant decrease in HI values in the oxidized samples and an increase in OI values in relation to the samples that were not influenced by oxidation. Variations in S2 versus C\-\{org\} contents indicate a change in kerogen from Type II to Type III with progressing oxidation. The presence of pyrobitumen and the depletion of hydrogen in the altered kerogen allow one to conclude that the kerogen was used as hydrogen donor for thermochemical sulfate reduction (TSR).展开更多
Two hundred and fifty single first-order Arrhenius reactions are simulated to generate S2 pyrograms at three heating rates 25,15,and 5°C·min-1.The activation energy(E)and pre-exponential factor(A)of the reac...Two hundred and fifty single first-order Arrhenius reactions are simulated to generate S2 pyrograms at three heating rates 25,15,and 5°C·min-1.The activation energy(E)and pre-exponential factor(A)of the reactions simulated follow a long-established trend of those variable values displayed by shales and kerogens.The characteristics of the transformation fraction(TF)profiles(product generation window temperatures)of the simulated single reactions are compared to the TF profiles of recorded shale pyrograms generated by multiple reactions with different E-A values lying near the defined E-A trend.Important similarities and differences are observed between the TF profile values of the two datasets.The similarities support the spread of E-A values involved in shale pyrogram best fits.The differences are most likely explained by the complexity of the multiple kerogen first-order and second-order reactions contributing to the recorded shale pyrograms versus the simplicity and crispness of the single first-order reactions simulated.The results also justify the validity of using the previously described“variable E-A pyrogram-fitting method”of multi-heating-rate shale pyrograms enabling optimizers to choose multiple reactions from an unlimited range of E-A values.In contrast,further doubt is cast on the validity of the constant-A pyrogram-fitting method used by the Easy%Ro technique,in that a distribution of reactions with a single A value is unlikely to represent the complex variety of kerogen macerals observed in shale formations.TF profiles generated by the variable E-A pyrogram-fitting method lie close to the established E-A trend and are likely to provide more realistic TF generation window temperatures than TF profiles generated by the constant-A pyrogram-fitting method.展开更多
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
基金supported by the National Natural Science Foundation of China(42004112,42274175,42030812,41974160)Natural Science Foundation of Sichuan Province(2023NSFSC0764)。
文摘Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting controlled experiments with a single variable is challenging for natural shales due to their high variations in components,diagenesis conditions,or pore fluid.We employed the hot-pressing technique to construct 11 well-controlled artificial shale with varying KC.These artificial shale samples were successive machined into prismatic shape for ultrasonic measurements along different directions.Observations revealed bedding perpendicular P-wave velocities are more sensitive to the increasing KC than bedding paralleling velocities due to the preferential alignments of kerogen.All elastic stiffnesses except C_(13)are generally decreasing with the increasing KC,the variation of C_(1) and C_(33)on kerogen content are more sensitive than those of C_(44)and C_(66).Apparent dynamic mechanical parameters(v and E)were found to have linear correlation with the true ones from complete anisotropic equations independent of KC,which hold value towards the interpretation of well logs consistently across formations,Anisotropic mechanical parameters(ΔE and brittlenessΔB)tend to decrease with the reducing KC,withΔB showing great sensitivity to KC variations.In the range of low KC(<10%),the V_(P)/V_(S) ratio demonstrated a linearly negative correlation with KC,and the V_(P)/V_(S) ratio magnitude of less than 1.75may serve as a significant characterization for highly organic-rich(>10%)shale,compilation of data from natural organic rich-shales globally verified the similar systematic relationships that can be empirically used to predict the fraction of KC in shales.
基金funded by the Natural Science Foundation of China(No.42373028,No.42072154).
文摘This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Both the Huadian and Maoming shales exhibit immature indicators in extractable and kerogen-bound hopanoids(notably,high abundance of C_(29)to C_(32)17β,21β-hopanes and unsaturated hopenes).In contrast,the Fushun oil shale's hopanoids from extracts and pyrolyzates suggest a higher maturity level.The absence of neohopenes in the pyrolyzates of the shales underpins that the kerogenbound hopanoid skeletons resist rearrangement.However,the Huadian oil shale's asymmetric distribution of C_(29)and C_(30)hopenes and neohopenes hints at the presence of an additional source.Novel unsaturated hopenes,such as hop-20(21)-enes,identified in pyrolyzates of the three kerogens at various pyrolysis temperatures,reveal the occurrence of double bonds in kerogen-bound hopanoid skeletons without methyl rearrangements.The absence of hop-20-(21)-ene in extracts suggests that it might act as an intermediate of these novel hopenes during the epimerization of hopanoid skeletons within kerogen.The extractable and pyrolytic hopanoids'stereochemical alignment indicates that epimerization may occur in both ring systems and alkyl side chains of kerogen-bound hopanoid skeletons.Sequential stepwise pyrolysis proves to be a quick screening method for geological hopanoids without causing any significant alteration to the original skeletons even when cracking multiple covalent bonds is necessary.
基金financially supported by the National Natural Science Foundation of China (42072145)the National Oil and Gas Special Project of China (2017ZX05008002)。
文摘Some trace elements(TEs),both bio-essential and redox-sensitive,are promising tracers of Earth’s surface processes.As an essential sedimentary organic matter,kerogen may have inherited and retained the key TEs from organisms.In this study,the distribution of TEs in kerogens from two sections(Dongkanshang and Fengtan) in South China was analyzed to explore its biogeochemical significance during Ediacaran-Lower Cambrian.Compared with V and Zn,the relative concentrations of Co,Ni,Cu,and Mo were generally higher in kerogens than in the whole rocks.Enrichment of TEs in the kerogen was involved in the selective utilization of TEs by different organic precursors and the competition of sulfide in the depositional environment.The significant content of TEs in the kerogens from deep-water facies corresponded to a more negative δ^(13) Ckeras a result of the dominant taxa of chemo autotrophs with tremendous bioaccumulation potential for trace metals and the reduction conditions favorable for organic matter preservation.Furthermore,the content variations of trace elements in the kerogens coincided with the rise and fall of the Ediacaran biota,implying that the trace elements might have played an important role in early life evolution.
基金supported by the National Natural Science Foundation of China(grants No.41972163 and 42173055).
文摘Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-line detection of gas chromatography-mass spectrometry(GC-MS).Occluded fractions(bitumenⅡ)released at low-temperature steps(≥410℃)show consistent biodegradative signatures with that reported for solvent-extracted fractions(bitumenⅠ)of the original shales,e.g.,broad range of abundant n-alkanes,isoprenoids and regular hopanes for the non-biodegraded JJZG-1;trace n-alkanes and abundant hopanes for the moderately biodegraded JJZG-2;and no n-alkanes but still prominent hopanes including the microbially produced 25-nohopanes for the severely biodegraded JJZG-3.This consistency between bitumenⅡand bitumenⅠfractions indicates the biodegradability of the kerogenoccluded bitumenⅡwith limited protection from host kerogen.A minor level of protection was suggested by the trace distribution of n-alkanes in the bitumenⅡof JJZG-2,whereas the bitumenⅠhad no nalkanes.The kerogen itself was more resistant to biodegradation as reflected by the persistence of high abundances of both n-alkanes and hopanes in the high temperature(≥460℃)products of all three kerogen samples.However,the relative abundances of these product groups did show some evidence of biodegradation alteration,e.g.,ratios of n-C_(15)alkene/C_(27)hop-17(21)-ene at 510℃pyrolysis decreased by order of magnitude from the non-biodegraded(JJZG-1=27.4)to highly biodegraded(0.3 for JJZG-3)samples.The reduced biodegradation impact on the kerogen fraction(Cf.bitumen fractions)was also evident by the absence of 25-norhopanes in the high-temperature analysis of the JJZG-3 kerogen.
基金The authors acknowledge financial support from the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51821092)the General Projects of the Natural Science Foundation of China(No.51674275)+1 种基金the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-2003)Tianyu Wang acknowledges the China Scholarship Council for financial support during his visit to Harvard University.
文摘Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D scanning confocal microscopy,scanning electron microscopy(SEM),X-ray nano-computed tomography(nano-CT),and low-pressure N2 adsorption analysis to analyze the pore structures of the shale.Additionally,the adsorption behavior of methane on shales with different pore structures is investigated by molecular simulations.The results show that the SEM image of the shale sample obviously displays four different pore shapes,including slit pore,square pore,triangle pore,and circle pore.The average coordination number is 4.21 and the distribution of coordination numbers demonstrates that pores in the shale have high connectivity.Compared with the adsorption capacity of methane on triangle pores,the adsorption capacity on slit pore,square pore,and circle pore are reduced by 9.86%,8.55%,and 6.12%,respectively.With increasing pressure,these acute wedges fill in a manner different from the right or obtuse angles in the other pores.This study offers a quantitative understanding of the effect of pore structure on methane adsorption in the shale and provides better insight into the evaluation of gas storage in geologic shale reservoirs.
基金supported by the National Science and Technology Major Project(2017ZX05035004–002)the National Natural Science Foundation of China(no.41702167)+1 种基金the Fundamental Research Funds for the Central Universities(No.2017CXNL03)the Scientific Research Foundation of the Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,Ministry of Education(China University of Mining and Technology)(No.2017–007)
文摘Kerogen plays an important role in shale gas adsorption,desorption and diffusion.Therefore,it is necessary to characterize the molecular structure of kerogen.In this study,four kerogen samples were isolated from the organic-rich shale of the Longmaxi Formation.Raman spectroscopy was used to determine the maturity of these kerogen samples.Highresolution transmission electron microscopy(HRTEM),13 C nuclear magnetic resonance(13 C NMR),X-ray diffraction(XRD)and Fourier transform infrared(FT-IR)spectroscopy were conducted to characterize the molecular structure of the shale samples.The results demonstrate that VReqv of these kerogen samples vary from 2.3%to 2.8%,suggesting that all the kerogen samples are in the dry gas window.The macromolecular carbon skeleton of the Longmaxi Formation kerogen is mainly aromatic(fa’=0.56).In addition,the aromatic structural units are mainly composed of naphthalene(23%),anthracene(23%)and phenanthrene(29%).However,the aliphatic structure of the kerogen macromolecules is relatively low(fal*+falH=0.08),which is presumed to be distributed in the form of methyl and short aliphatic chains at the edge of the aromatic units.The oxygen-containing functional groups in the macromolecules are mainly present in the form of carbonyl groups(fac=0.23)and hydroxyl groups or ether groups(falO=0.13).The crystallite structural parameters of kerogen,including the stacking height(Lc=22.84?),average lateral size(La=29.29?)and interlayer spacing(d002=3.43?),are close to the aromatic structural parameters of anthracite or overmature kerogen.High-resolution transmission electron microscopy reveals that the aromatic structure is well oriented,and more than 65%of the diffractive aromatic layers are concentrated in the main direction.Due to the continuous deep burial,the longer aliphatic chains and oxygen-containing functional groups in the kerogen are substantially depleted.However,the ductility and stacking degree of the aromatic structure increases during thermal evolution.This study provides quantitative information on the molecular structure of kerogen samples based on multiple research methods,which may contribute to an improved understanding of the organic pores in black shale.
基金financially supported by the National Natural Science Foundation of China(Grant No.52004317,42090024)the Natural Science Foundation of Shandong Province of China(No.ZR2020ME091)+1 种基金the Fundamental Research Funds for the Central Universities(20CX06016A)the National Science and Technology Major Project(2017ZX05049-004)
文摘Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.
基金funded by National Natural Science Foundation of China (Grant No. U1663201, 41472099 and 41872155)the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDA14010404)CNPC innovation Foundation (2016D-5007-0102)
文摘Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially for source rocks which have high-over level of thermal maturity. Systematic identification of original organism assemblages of the Lower Paleozoic potential source rocks and detailed carbon isotopic composition of kerogen analyses were conducted for four outcrop sections in the Tarim basin. Results indicated that the original organism assemblages of the lower part of the Lower Cambrian were composed mainly of benthic algae, whereas those of the Upper Cambrian and the Ordovician were characterized by planktonic algae. Kerogen carbon isotopic data demonstrated that the δ13 Ckerogen values of source rocks dominated by benthic algae are lower than-34‰, whereas the δ13 Ckerogen values of source rocks dominated by planktonic algae are higher than-30‰ in general. We tentatively suggested that the carbon species those are utilized by algae and the carbon isotopic fractionation during photosynthesis are the major controls for the δ13 Ckerogen values in the Lower Paleozoic source rocks in the Tarim basin. Correlating the δ13 C values of oils exploited in the Tarim basin, the original organism assemblages, and δ13 Ckerogen values of source rocks, it implied that the Lower Paleozoic oils exploited in the Tarim basin should be sourced from the source rocks with original organism assemblages dominated by planktonic algae, and the hydrocarbon sourced from the Cambrian benthic algae should be of great exploration potential in future. Original organism assemblages in source rocks can provide important clues for oil-source rocks correlation, especially for the source rocks with high thermal maturity.
基金supported by the Australian Research Council under Grant DP200101293UWA China Scholarshipsthe China Scholarship Council(CSC No.201707970011)。
文摘Stimulated shale reservoirs consist of kerogen,inorganic matter,secondary and hydraulic fractures.The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challenging.Here we establish an analytical method that addresses kerogen-inorganic matter gas transfer,dispersed kerogen distribution,and complex gas flow mechanisms to facilitate evaluating gas production.The matrix element is defined as a kerogen core with an exterior inorganic sphere.Unlike most previous models,we merely use boundary conditions to describe kerogen-inorganic matter gas transfer without the instantaneous kerogen gas source term.It is closer to real inter-porosity flow conditions between kerogen and inorganic matter.Knudsen diffusion,surface diffusion,adsorption/desorption,and slip corrected flow are involved in matrix gas flow.Matrix-fracture coupling is realized by using a seven-region linear flow model.The model is verified against a published model and field data.Results reveal that inorganic matrices serve as a major gas source especially at early times.Kerogen provides limited contributions to production even under a pseudo-steady state.Kerogen properties’influence starts from the late matrix-fracture inter-porosity flow regime,while inorganic matter properties control almost all flow regimes except the early-mid time fracture linear flow regime.The contribution of different linear flow regions is also documented.
基金supported by National Natural Science Foundation of China (No. 41403049)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) (No. PRP/indep-3-1715)National Science and Technology Major Project during the 13th Five-Year Plan Period (2016ZX05007-002)。
文摘High-quality source rocks in saline lacustrine or marine sedimentary environments often show early peak petroleum generation and enhanced hydrocarbon yields,which have conventionally been attributed to organosulfur-enhanced thermal decomposition of kero gen.However,there is increasing awareness that the coexisting inorganic salts,particularly sulfates,might also contribute to the acceleration of petroleum generation.In this study,we investigated the influence of sulfates on the thermal decomposition of kerogen sampled from the Pingliang Formation in the Ordos Basin.Our results demonstrate that the kerogen samples mixed with sulfate generate more hydrocarbons with a lower peak production temperature than their sulfate-free counterparts.Detailed chemical analysis revealed that the presence of sulfates significantly facilitated the generation of resins and asphaltenes at temperatures below 350℃,corresponding in our simulations to the early stage of petroleum generation(Easy%R_o <1.0%).We hypothesize that sulfates can promote the fragmentation of kerogen via direct thermochemical oxidation into a complex mixture of bitumen components that consist mostly of compounds typically encountered in the classical resin and asphaltene fractions.The findings reveal a new reaction paradigm between sulfates and organic macromolecules that could offer useful guidance in the exploration for low-maturity oils.
基金financially supported by the National Natural Science Foundation of China (No. 41772117)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010103)the National Petroleum and Gas Projects of China (2017ZX05008002)
文摘There is a dearth of information about the distribution of trace elements in kerogen from shale rocks despite several reports on trace element composition in many shale samples. In this study, trace elements in shale rocks and their residual kerogens were determined by inductively coupled plasma–mass spectrometry. The results from this study show redox-sensitive elements relatively concentrated in the kerogens as compared to the shales. This may be primarily due to the adsorption and complexation ability of kerogen, which enables enrichment in Ni, Co, Cu, and Zn. For the rare earth elements(REEs),distinct distribution characteristics were observed for shales dominated by terrigenous minerals and their kerogen counterparts. However, shales with less input of terrigenous minerals showed similar REE distribution patterns to their residual kerogen. It is speculated that the distribution patterns of the REEs in shales and kerogens may be sourcerelated.
基金financially supported by University of Mohammed V-Morocco under the Project No.SCH 04/09 and HassanⅡAcademy of Science and Technology,Morocco.
文摘The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Central Kongo(CK)were investigated.X-ray diffraction,Fourier-transform infrared spectroscopy and thermal analysis(TG/DTA)showed that CK oil shale exhibits a siliceous mineral matrix with a consistent organic matter rich in aliphatic chains.The pyrolysis behavior of kerogen revealed the presence of a single mass loss between 300 and 550°C,estimated at 12.5%and attributed to the oil production stage.Non-isothermal kinetics was performed by determining the activation energy using the iterative isoconversional model-free methods and exhibits a constant value with E=211.5±4.7 kJ mol.1.The most probable kinetic model describing the kerogen pyrolysis mechanism was obtained using the Coats–Redfern and Arrhenius plot methods.The results showed a unique kinetic triplet confirming the nature of kerogen,predominantly typeⅠand reinforcing the previously reported geochemical characteristics of the CK oil shale.Besides,the calculation of thermodynamic parameters(ΔH~*,ΔS~*andΔG~*)corresponding to the pyrolysis of typeⅠkerogen revealed that the process is non-spontaneous,in agreement with DTA experiments.
文摘Biostratigraphy has remained a tool for basin and environmental reconstruction in sedimentology. This study aims to further delineate and classify the lithology, environment of deposition, and the biozonation of microorganisms found in the studied well. Thirty-four (34) ditch cutting samples from OMA well, offshore Dahomey Basin, were considered for their textural and palynomorphs/palynofacies characterization. The samples were observed and processed according to the standard palynological procedure for geologic samples using hydrochloric and hydrofluoric acid digestion. The stratigraphic sequence of the well ranges from shale to sandstone to argillaceous sandstone. The shales appear highly fissile and laminated in all shades of grey and black while the sandstone colour ranges from light-grey/brown to brown and very deep brown. The sandstone contains some mica flakes and likely pyrites in fine-medium, sub-angular to rounded grains. A total of 28 diverse palynomorphs were reported from the palynological analysis with low abundance. The low recovery of pollens was likely due to limited terrestrial influence and the reasonable amount of dinoflagellate cysts and microforaminifera wall present indicated a marginal marine to a distal offshore environment. Two zones correlated for this study are Danea mutabilis (Early Paleocene) and Dinogymnium euclaense (Upper Maastrichtian) zones. Palynomaceral classifications through visual, microscopic kerogen assessment resulted in high preservation of organic matter which suggests a reducing environment of deposition. The dominances of 48% amorphous (I), and 36% exinite (II), with a considerable amount of the 5% vitrinite (III), and 11% inertinite (IV) kerogen types, indicate that the organic matter is mainly sapropelic and mixed humic-sapropelic types which are favorable for hydrocarbon generation and primarily of marine origin. The spores/pollen colour ranges from light yellow/brown, brown transitioning into darker brown on a scale of 4/5 transitioning to 5/6. Medium degree of maturation (4/5) to late degree (6/7) of maturation was inferred. The studied interval of the OMA well sediments agrees with the established stratigraphic interval of the offshore, Dahomey basin, within the Upper Maastrichtian to Late Paleocene age range and supports high preservation of organic matter sufficient and mature enough to generate hydrocarbon.
基金National Natural Science Foundation of China(4 9672 13 1)
文摘In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.
文摘An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for the sediments studied, with considerable influx of continental organic matter that were accumulated during the Cenomanian-Turonian age. With reference to the lithostratigraphic profile of the Douala/Kribi-Campo Basin, the age obtained reveals that the sedimentary sections studied belong particularly to the lower section of the Logbadjeck/Mungo River Formation, based on the following benthic foraminifera assemblage: Ammobaculites jessensis, Ammobaculites benuensis, Ammobaculites coprolithiformis, Ammotium cf nkalagum, Ammotium nwalum, Haplophragmoides cf beuchensis, Trochamina taylorana. A particularly very poor palynomorph assemblage was recovered and included no age diagnostic species: Acrostichum aureum, Lycopodiumsporites sp., Fungal spore, Lavigatosporites discordatus, Longapertites sp., Verrucosisporites sp. An organic petrographic analysis performed on these samples revealed Kerogen Type-II and Type-III. The entire data sets obtained from this area is remarkably poor and we suspect poor preservation as the cause viewing the extent of weathering. The paleo-depositional environment of these sediments was suggested both from the foraminifera and palynomorphs present and confirmed from the organic matter types and macrofossil contents. The studied sections are composed generally of dark to dark-gray shale beds. As one of the petroleum producing basins within the Gulf of Guinea in which exploration/exploitation activities are on-going, the current research is aim at providing more data useful in the continuous search for more potential source rocks in this basin.
文摘In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil shale increases the intensity of the peaks in the X-ray diffractograms.Infrared spectra and X-ray diffractograms reveal the presence of mineral,calcite,quartz,kaolinite,and pyrite in the mineral matrix of the oil shale.Hydrochloric and hydrofluoric acids dissolution do not alter the organic matter.The nonisothermal weight loss measurements indicate that thermal decomposition of the isolated kerogen can be described by first-order reaction.A single kinetic expression is valid over the temperature range of kerogen pyrolysis between 433K and 873K.Furthermore,the results indicate that the removal of mineral matter causes a decrease in the activation energies of the pyrolysis reactions of oil shale.
文摘Thirty-seven Kupferschiefer samples from southwestern Poland were analyzed by microscopy, Rock-Eval approach and instrumental neutron activation analysis to understand the geochemical and morphological characteristics of kerogen present in the samples. The analytical results indicate that there are two different types of kerogens. One type was only subjected to thermal alteration processes, and the other was further oxidized after deposition of the sediment. In the oxidized samples migrabitumen was transformed into pyrobitumen. Rock\|Eval analyses show a significant decrease in HI values in the oxidized samples and an increase in OI values in relation to the samples that were not influenced by oxidation. Variations in S2 versus C\-\{org\} contents indicate a change in kerogen from Type II to Type III with progressing oxidation. The presence of pyrobitumen and the depletion of hydrogen in the altered kerogen allow one to conclude that the kerogen was used as hydrogen donor for thermochemical sulfate reduction (TSR).
文摘Two hundred and fifty single first-order Arrhenius reactions are simulated to generate S2 pyrograms at three heating rates 25,15,and 5°C·min-1.The activation energy(E)and pre-exponential factor(A)of the reactions simulated follow a long-established trend of those variable values displayed by shales and kerogens.The characteristics of the transformation fraction(TF)profiles(product generation window temperatures)of the simulated single reactions are compared to the TF profiles of recorded shale pyrograms generated by multiple reactions with different E-A values lying near the defined E-A trend.Important similarities and differences are observed between the TF profile values of the two datasets.The similarities support the spread of E-A values involved in shale pyrogram best fits.The differences are most likely explained by the complexity of the multiple kerogen first-order and second-order reactions contributing to the recorded shale pyrograms versus the simplicity and crispness of the single first-order reactions simulated.The results also justify the validity of using the previously described“variable E-A pyrogram-fitting method”of multi-heating-rate shale pyrograms enabling optimizers to choose multiple reactions from an unlimited range of E-A values.In contrast,further doubt is cast on the validity of the constant-A pyrogram-fitting method used by the Easy%Ro technique,in that a distribution of reactions with a single A value is unlikely to represent the complex variety of kerogen macerals observed in shale formations.TF profiles generated by the variable E-A pyrogram-fitting method lie close to the established E-A trend and are likely to provide more realistic TF generation window temperatures than TF profiles generated by the constant-A pyrogram-fitting method.