Solid oxide cells(SOCs)are all solid ceramic devices with the dual functionality of solid oxide fuel cells(SOFCs)to convert the chemical energy of fuels like H2,natural gas and other hydrocarbons to electricity and of...Solid oxide cells(SOCs)are all solid ceramic devices with the dual functionality of solid oxide fuel cells(SOFCs)to convert the chemical energy of fuels like H2,natural gas and other hydrocarbons to electricity and of solid oxide electrolysis cells(SOECs)to store renewable electric energy of sun and wind in hydrogen fuel.Among the electrochemical energy conversion and storage devices,SOCs are the most clean and efficient technology with unique dual functionality.Due to the high operation temperature(typically 600–800°C),SOCs exhibit many advantages over other energy conversion devices,such as low material cost,high efficiency and fuel flexibility.There has been rapid development of SOC technologies over the last decade with significant advantages and progress in key materials and a fundamental understanding of key issues such as an electrode,electrolyte,performance degradation,poisoning,and stack design.The reversible polarization also has a critical effect on the surface segregation and stability of the electrode and electrode/electrolyte interface.This critical review starts with a brief introduction,working principles and thermodynamics of SOC technology to readers with interests in this rapidly developing and emerging field.Then the key materials currently used in SOCs are summarized,followed by the discussion of the most advanced electrode modification methods and critical issues of SOCs,including the surface chemistry,segregation,electrode/electrolyte interface and varying material degradation mechanisms under reversible operations.The challenges and prospects of SOC technology for future developments are discussed.展开更多
Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the sta...Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.展开更多
The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-te...The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell.The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy.The results show that the pore size of the key electrode material is 6.5 lm and the matrix material is a-LiAlO_(2).Experimentally,the open circuit voltage of the single cell was found to be 1.23 V.The current density was greater than 100 mA/cm^(2)at an operating voltage of 0.7 V.The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm^(2)and achieved an open circuit voltage of greater than 85 V.The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V.The influence and long-term stable operation of the stack were also analyzed and discussed.The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)operating at intermediate temperatures,which have low costs,low environmental impact,and high theoretical electrolysis efficiency,are considered promising next-generatio...Protonic solid oxide electrolysis cells(P-SOECs)operating at intermediate temperatures,which have low costs,low environmental impact,and high theoretical electrolysis efficiency,are considered promising next-generation energy conversion devices for green hydrogen production.However,the developments and applications of P-SOECs are restricted by numerous material-and interface-related issues,including carrier mismatch between the anode and electrolyte,current leakage in the electrolyte,poor interfacial contact,and chemical stability.Over the past few decades,considerable attempts have been made to address these issues by improving the properties of P-SOECs.This review comprehensively explores the recent advances in the mechanisms governing steam electrolysis in P-SOECs,optimization strategies,specially designed components,electrochemical performance,and durability.In particular,given that the lack of suitable anode materials has significantly impeded P-SOEC development,the relationships between the transferred carriers and the cell performance,reaction models,and surface decoration approaches are meticulously probed.Finally,the challenges hindering P-SOEC development are discussed and recommendations for future research directions,including theoretical calculations and simulations,structural modification approaches,and large-scale single-cell fabrication,are proposed to stimulate research on P-SOECs and thereby realize efficient electricity-to-hydrogen conversion.展开更多
基金supported by the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory under Project 41210502the National Nature Science Foundation of China(22005055,22279018,and 21875038).
文摘Solid oxide cells(SOCs)are all solid ceramic devices with the dual functionality of solid oxide fuel cells(SOFCs)to convert the chemical energy of fuels like H2,natural gas and other hydrocarbons to electricity and of solid oxide electrolysis cells(SOECs)to store renewable electric energy of sun and wind in hydrogen fuel.Among the electrochemical energy conversion and storage devices,SOCs are the most clean and efficient technology with unique dual functionality.Due to the high operation temperature(typically 600–800°C),SOCs exhibit many advantages over other energy conversion devices,such as low material cost,high efficiency and fuel flexibility.There has been rapid development of SOC technologies over the last decade with significant advantages and progress in key materials and a fundamental understanding of key issues such as an electrode,electrolyte,performance degradation,poisoning,and stack design.The reversible polarization also has a critical effect on the surface segregation and stability of the electrode and electrode/electrolyte interface.This critical review starts with a brief introduction,working principles and thermodynamics of SOC technology to readers with interests in this rapidly developing and emerging field.Then the key materials currently used in SOCs are summarized,followed by the discussion of the most advanced electrode modification methods and critical issues of SOCs,including the surface chemistry,segregation,electrode/electrolyte interface and varying material degradation mechanisms under reversible operations.The challenges and prospects of SOC technology for future developments are discussed.
基金supported by the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)。
文摘Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.
基金This project was supported by National Key R&D Program of China(2017YFB0601903)Beijing Science and Technology Commission Technology Collaborative Innovation Project(201100004520001)the Huaneng Clean Energy Institute(TZ-11-SST01-JY-01).
文摘The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell.The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy.The results show that the pore size of the key electrode material is 6.5 lm and the matrix material is a-LiAlO_(2).Experimentally,the open circuit voltage of the single cell was found to be 1.23 V.The current density was greater than 100 mA/cm^(2)at an operating voltage of 0.7 V.The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm^(2)and achieved an open circuit voltage of greater than 85 V.The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V.The influence and long-term stable operation of the stack were also analyzed and discussed.The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China.
基金Huangpu Hydrogen Energy Innovation Center at Guangzhou UniversityLaboratory of Electronic Materials Chemistry at Hokkaido University+1 种基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2022A1515110470Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells。
文摘Protonic solid oxide electrolysis cells(P-SOECs)operating at intermediate temperatures,which have low costs,low environmental impact,and high theoretical electrolysis efficiency,are considered promising next-generation energy conversion devices for green hydrogen production.However,the developments and applications of P-SOECs are restricted by numerous material-and interface-related issues,including carrier mismatch between the anode and electrolyte,current leakage in the electrolyte,poor interfacial contact,and chemical stability.Over the past few decades,considerable attempts have been made to address these issues by improving the properties of P-SOECs.This review comprehensively explores the recent advances in the mechanisms governing steam electrolysis in P-SOECs,optimization strategies,specially designed components,electrochemical performance,and durability.In particular,given that the lack of suitable anode materials has significantly impeded P-SOEC development,the relationships between the transferred carriers and the cell performance,reaction models,and surface decoration approaches are meticulously probed.Finally,the challenges hindering P-SOEC development are discussed and recommendations for future research directions,including theoretical calculations and simulations,structural modification approaches,and large-scale single-cell fabrication,are proposed to stimulate research on P-SOECs and thereby realize efficient electricity-to-hydrogen conversion.