Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approxi...Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.展开更多
In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cu...In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cubic,face-center cubic,or hexagonal close-packed lattice.Here,we report a class of compounds stabilized at high pressure with Rubik’s cubic Fermi surface.展开更多
The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced ant...The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced antiferromagnetic excitations.To understand the underlying physics,here we report measurements from highresolution angle-resolved photoemission.Our results reveal fine splittings of the conduction bands related to the locally noncentrosymmetric structure,as well as a quasi-two-dimensional Fermi surface(FS)with strong 4f contributions.The FS shows signs of nesting with an in-plane vector q_(1)=(π/α,π/α),which is facilitated by the heavy bands nearˉ𝑋arising from the characteristic conduction-X hybridization.The FS nesting provides a natural explanation for the observed antiferromagnetic spin fluctuations at(π/α,π/α),which might be the driving force for its unconventional superconductivity.Our experimental results can be reasonably explained by density functional theory plus dynamical mean field theory calculations,which can capture the strong correlation effects.Our study not only provides spectroscopic signature of the key factors underlying the field-induced superconducting transition,but also uncovers the critical role of FS nesting and lattice Kondo effect in the underlying magnetic fluctuations.展开更多
The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition tem...The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature Tc of about 0.85K in the AV_(3)Sb_(5) family(A=K,Rb,Cs)that severely challenges electronic spectroscopic probes.Here,utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK,we observe chiral 2×2 pair density waves with residual Fermi arcs in RbV_(3)Sb_(5).We find a superconducting gap of 150 μeV with substantial residual in-gap states.The spatial distribution of this gap exhibits chiral 2×2 modulations,signaling a chiral pair density wave(PDW).Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns.We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairing...We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi s...A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi scale and solves a mystery last over 20 years in extracting the nuclear radius via vector meson photoproduction.展开更多
In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integral...In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.展开更多
The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states...The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.展开更多
A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS ...A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10574011)the Foundation for Innovative Research Groups Foundation of Beijing Normal University
文摘Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.010-63243095)the National Science Foundation of China(Grant Nos.92263101 and 12174200)。
文摘In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cubic,face-center cubic,or hexagonal close-packed lattice.Here,we report a class of compounds stabilized at high pressure with Rubik’s cubic Fermi surface.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA140220 and 2023YFA1406303)the State Key Project of Zhejiang Province(Grant No.LZ22A040007)+2 种基金the National Natural Science Foundation of China(Grant Nos.U23A20580,12174331,12204159,and 12274364)the Key R&D Program of Zhejiang Province,China(Grant No.2021C01002)the Bridging Grant(Grant No.BG11-072020)with China,Japan,South Korea and ASEAN region funded by the Swiss State Secretariat for Education,Research and Innovation。
文摘The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced antiferromagnetic excitations.To understand the underlying physics,here we report measurements from highresolution angle-resolved photoemission.Our results reveal fine splittings of the conduction bands related to the locally noncentrosymmetric structure,as well as a quasi-two-dimensional Fermi surface(FS)with strong 4f contributions.The FS shows signs of nesting with an in-plane vector q_(1)=(π/α,π/α),which is facilitated by the heavy bands nearˉ𝑋arising from the characteristic conduction-X hybridization.The FS nesting provides a natural explanation for the observed antiferromagnetic spin fluctuations at(π/α,π/α),which might be the driving force for its unconventional superconductivity.Our experimental results can be reasonably explained by density functional theory plus dynamical mean field theory calculations,which can capture the strong correlation effects.Our study not only provides spectroscopic signature of the key factors underlying the field-induced superconducting transition,but also uncovers the critical role of FS nesting and lattice Kondo effect in the underlying magnetic fluctuations.
基金supported by the National Key R&D Program of China(Grant Nos.2023YFA1407300,2023YFA1406500,2022YFA1403800,and 2023YFF0718403)the National Natural Science Foundation of China(Grant Nos.12374060,12274459,and 12074162)+2 种基金Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2201001)the Beijing Natural Science Foundation(Grant No.Z200005)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515130005)。
文摘The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature Tc of about 0.85K in the AV_(3)Sb_(5) family(A=K,Rb,Cs)that severely challenges electronic spectroscopic probes.Here,utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK,we observe chiral 2×2 pair density waves with residual Fermi arcs in RbV_(3)Sb_(5).We find a superconducting gap of 150 μeV with substantial residual in-gap states.The spatial distribution of this gap exhibits chiral 2×2 modulations,signaling a chiral pair density wave(PDW).Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns.We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174067 and 11804223)。
文摘We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
文摘A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi scale and solves a mystery last over 20 years in extracting the nuclear radius via vector meson photoproduction.
文摘In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.
基金the National Natural Science Foundation of China(Grant No.11804154)Scientific Research Foundation of NJIT(Grant No.YKJ201853).
文摘The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.
基金the National Natural Science Foundation of China (Grant No. 11804154)the Scientific Research Foundation of NJIT (Grant Nos. YKJ201853 and CKJA201807)。
文摘A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.