A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman...A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.展开更多
A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the sol...A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.展开更多
The homotopy formulas of (r,s) differential forms and the solution of equation of type (r,s) on local q-convex domains in Stein manifolds are obtained.The homotopy formulas on local q-convex domains have important app...The homotopy formulas of (r,s) differential forms and the solution of equation of type (r,s) on local q-convex domains in Stein manifolds are obtained.The homotopy formulas on local q-convex domains have important applications in uniform estimates of equation and holomorphic extension of CR-manifolds.展开更多
基金National Natural Science Foundation and Mathematical "Tian Yuan" Foundation of China (10271097 and TY10126033)
文摘A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.
基金Supported by the National Natural Science Foundation and Mathematical "Tian Yuan" Foundation of China and the Natural Science Foundation of Fujian (Grant No. 10271097, TY10126033, F0110012)
文摘A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.
基金Project supported by the National Natural Science Foundation of China.
文摘The homotopy formulas of (r,s) differential forms and the solution of equation of type (r,s) on local q-convex domains in Stein manifolds are obtained.The homotopy formulas on local q-convex domains have important applications in uniform estimates of equation and holomorphic extension of CR-manifolds.