期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
ZONAL SPHERICAL POLYNOMIALS WITH MINIMAL L_1-NORM
1
作者 M. Reimer 《Analysis in Theory and Applications》 1995年第3期22-35,共14页
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens... Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity. 展开更多
关键词 ZONAl SPHERICAl POlYNOMIAlS WITH minimAl l1-norm
下载PDF
Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity 被引量:9
2
作者 Pang Tinghua Lu Wenkai Ma Yongjun 《Applied Geophysics》 SCIE CSCD 2009年第3期241-247,299,300,共9页
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late... The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries. 展开更多
关键词 Multiple attenuation adaptive multiple subtraction l1-norm lateral continuity
下载PDF
A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS* 被引量:8
3
作者 He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1998年第4期365-371,共7页
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ... Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations. 展开更多
关键词 FAUlT DIAGNOSIS l1-norm NEURAl OPTIMIZATION
下载PDF
球空间中极小超曲面上L^(p)调和1-形式的有限性定理
4
作者 姚中伟 《西南师范大学学报(自然科学版)》 CAS 2023年第3期39-46,共8页
设M^(m)(m≥3)是空间S^(m+1)中的完备定向非紧极小超曲面,考虑子流M^(m)上L^(p)调和1-形式的有限性问题.如果极小超曲面M^(m)存在一个紧致子集Ω使得MΩ是稳定的,则称M^(m)具有有限的指数.首先,在M^(m)有有限指数的假设条件下,应用Boch... 设M^(m)(m≥3)是空间S^(m+1)中的完备定向非紧极小超曲面,考虑子流M^(m)上L^(p)调和1-形式的有限性问题.如果极小超曲面M^(m)存在一个紧致子集Ω使得MΩ是稳定的,则称M^(m)具有有限的指数.首先,在M^(m)有有限指数的假设条件下,应用Bochner公式、Sobolev不等式及截断函数和指标迭代的方法,证得:如果2≤p≤2m/m-1,则M^(m)上L^(p)调和1-形式空间的维数有限.其次,记A为超曲面M^(m)的第二基本形式,M^(m)的全曲率定义为第二基本形式的L2模.在M^(m)全曲率有正上界的假设条件下(特别地,该正上界的取值仅依赖于子流形M^(m)的维数m),利用截断函数法,得到了M^(m)上L^(p)调和1-形式的有限性定理.特别地,令p=2,可进一步得到,在极小超曲面M^(m)具有有限指数或全曲率有正上界的假设条件下,M^(m)仅有有限多个非抛物端. 展开更多
关键词 l^(p)调和1-形式 极小超曲面 有限指数 有限性定理
下载PDF
l_(1)-norm Based GWLP for Robust Frequency Estimation
5
作者 Yuan Chen Liangtao Duan +1 位作者 Weize Sun Jingxin Xu 《Journal on Big Data》 2019年第3期107-116,共10页
In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est... In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance. 展开更多
关键词 Robust frequency estimation linear prediction impulsive noise weighted l_(1)-norm minimization
下载PDF
非线性l-1模极小化问题的极大熵差分进化算法 被引量:3
6
作者 李超燕 秦晓明 赖红辉 《计算机工程与应用》 CSCD 北大核心 2011年第8期41-43,92,共4页
针对一类非线性l-1模极小化问题目标函数非光滑的特点给求解带来的困难,利用差分进化算法并结合极大熵函数法给出了解决此类问题的一种有效算法。利用极大熵函数将l-1模极小化问题转化为一个光滑函数的无约束最优化问题,利用差分进化算... 针对一类非线性l-1模极小化问题目标函数非光滑的特点给求解带来的困难,利用差分进化算法并结合极大熵函数法给出了解决此类问题的一种有效算法。利用极大熵函数将l-1模极小化问题转化为一个光滑函数的无约束最优化问题,利用差分进化算法对其进行求解。实验结果表明,该方法是有效的。 展开更多
关键词 差分进化算法 l-1模极小化问题 极大熵方法
下载PDF
非线性l-1模极小化问题的极大熵粒子群算法 被引量:4
7
作者 张建科 《计算机工程与应用》 CSCD 北大核心 2009年第13期62-64,共3页
针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然... 针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然后应用粒子群算法来优化此问题。数值结果表明,该算法收敛快、数值稳定性好,是求解非线性l-1模极小化问题的一种有效算法。 展开更多
关键词 粒子群算法 进化算法 l-1模极小化问题 极大熵函数
下载PDF
非负l^1图及其在谱聚类中的应用
8
作者 史加荣 杨威 魏宗田 《计算机工程与应用》 CSCD 北大核心 2011年第27期6-7,23,共3页
信息图的构造对许多机器学习任务来说是至关重要的。基于稀疏表示理论,提出了一种有向非负l1图。在构造此图的过程中,先将每个样例表示成其他样例的非负线性组合,再通过求解l1最小化问题来同时获得近邻样例和对应的相似度。最后将基于非... 信息图的构造对许多机器学习任务来说是至关重要的。基于稀疏表示理论,提出了一种有向非负l1图。在构造此图的过程中,先将每个样例表示成其他样例的非负线性组合,再通过求解l1最小化问题来同时获得近邻样例和对应的相似度。最后将基于非负l1图的谱聚类方法应用于手写字符的聚类问题。与基于l1图的谱聚类方法相比,所提方法具有较好的聚类性能和较低的计算复杂度。 展开更多
关键词 非负l1 谱聚类 l1最小化 手写字符聚类
下载PDF
L_1范数支持向量机在代谢组学中的应用
9
作者 丁国辉 孙建强 +2 位作者 吴俊芳 黄慎 丁义明 《波谱学杂志》 CAS CSCD 北大核心 2015年第1期67-77,共11页
代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准... 代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准确、稳健的方法,在代谢组学中的应用较少.该文应用L1-norm SVM方法对小鼠感染血吸虫后的代谢数据进行了分析,分析结果显示L1-norm SVM在聚类与特征选择方面具有优势,并表明它在代谢组学领域的应用有着潜力和前景. 展开更多
关键词 模式识别 l1范数支持向量机(l1-norm SVM):正交偏最小二乘(O-PlS)代谢组学 核磁共振(NMR)
下载PDF
一个修正的l_1模算法
10
作者 李文军 孙秀真 《石油大学学报(自然科学版)》 CSCD 1997年第2期90-94,共5页
对BS算法进行了修正,找出其内部量的递推关系,构造了一个更有效。
关键词 l1模极小解 进基 出基 最优化
下载PDF
Face Recognition from Incomplete Measurements via <i>l<sub>1</sub></i>-Optimization
11
作者 Miguel Argaez Reinaldo Sanchez Carlos Ramirez 《American Journal of Computational Mathematics》 2012年第4期287-294,共8页
In this work, we consider a homotopic principle for solving large-scale and dense l1underdetermined problems and its applications in image processing and classification. We solve the face recognition problem where the... In this work, we consider a homotopic principle for solving large-scale and dense l1underdetermined problems and its applications in image processing and classification. We solve the face recognition problem where the input image contains corrupted and/or lost pixels. The approach involves two steps: first, the incomplete or corrupted image is subject to an inpainting process, and secondly, the restored image is used to carry out the classification or recognition task. Addressing these two steps involves solving large scale l1minimization problems. To that end, we propose to solve a sequence of linear equality constrained multiquadric problems that depends on a regularization parameter that converges to zero. The procedure generates a central path that converges to a point on the solution set of the l1underdetermined problem. In order to solve each subproblem, a conjugate gradient algorithm is formulated. When noise is present in the model, inexact directions are taken so that an approximate solution is computed faster. This prevents the ill conditioning produced when the conjugate gradient is required to iterate until a zero residual is attained. 展开更多
关键词 SPARSE Representation l1minimization Face Recognition SPARSE Recovery INTERIOR Point Methods SPARSE REGUlARIZATION
下载PDF
Association RuleMining Frequent-Pattern-Based Intrusion Detection in Network
12
作者 S.Sivanantham V.Mohanraj +1 位作者 Y.Suresh J.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1617-1631,共15页
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da... In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI. 展开更多
关键词 IDS K-MEANS frequent pattern tree false alert MINING l1-norm
下载PDF
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
13
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
14
作者 Jian Lu Yuting Ye +2 位作者 Yiqiu Dong Xiaoxia Liu Yuru Zou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1171-1191,共21页
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim... In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise. 展开更多
关键词 Image denoising Weighted nuclear norm minimization l 1-data-fidelity term low rank analysis Impulse noise
原文传递
EQUIVALENCE BETWEEN NONNEGATIVE SOLUTIONS TO PARTIAL SPARSE AND WEIGHTED l_1-NORM MINIMIZATIONS
15
作者 Xiuqin Tian Zhengshan Dong Wenxing Zhu 《Annals of Applied Mathematics》 2016年第4期380-395,共16页
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different... Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems. 展开更多
关键词 compressed sensing sparse optimization range spae proper-ty equivalent condition l0-norm minimization weighted l1-norm minimization
原文传递
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
16
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare l-shaped array joint parameter estimation l1-norm minimization Bayesian compressive sensing(CS) pair matching
下载PDF
基于0-1规划的规则中文文件碎片自动拼接技术 被引量:1
17
作者 蓝洋 和亮 《计算机系统应用》 2015年第4期270-273,共4页
为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同... 为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同类算法相比,本文的算法无需使用人工干预即可完成正确拼接. 展开更多
关键词 规则碎片拼接 0-1规划 聚类分析 文本特征提取 l1-norm
下载PDF
基于SMO的层次型1-FSVM算法 被引量:3
18
作者 左萍平 孙赟 +1 位作者 顾弘 齐冬莲 《计算机工程》 CAS CSCD 北大核心 2010年第19期188-189,192,共3页
针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于... 针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于光识别手写数字集和车牌定位的结果表明,1-FSVM算法具有较高的检测率与较快的检测速度。 展开更多
关键词 模糊一类支持向量机 序贯最小优化 层次型
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
19
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix l1-norm l2 norm latent factor model recommender system smooth l1-norm
下载PDF
Block Sparse Recovery via Mixed l_2/l_1 Minimization 被引量:10
20
作者 Jun Hong LIN Song LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1401-1412,共12页
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl... We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307. 展开更多
关键词 Compressed sensing block RIP block sparsity mixed l2/l1 minimization
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部