树叶晃动、光照变化等自然场景下的动态背景会影响运动目标检测的准确性,区分动态背景和前景目标的变化是复杂场景下运动目标检测的首要任务。针对现有的前景提取算法逐点提取前景从而导致计算资源浪费的问题,提出了一种区域提取与改进L...树叶晃动、光照变化等自然场景下的动态背景会影响运动目标检测的准确性,区分动态背景和前景目标的变化是复杂场景下运动目标检测的首要任务。针对现有的前景提取算法逐点提取前景从而导致计算资源浪费的问题,提出了一种区域提取与改进LBP(Local Binary Patterns)纹理特征相结合的运动目标检测算法。首先,将图像分为大小相等的图像块,利用各图像块的统计特性建立核密度估计(Kernel Density Estimation,KDE)模型,并用KDE模型估计出前景区域。然后,计算前景块中所有像素点的改进LBP纹理特征直方图。最后,通过直方图匹配提取所有的前景像素实现目标的精确提取,并用概率模型更新背景。实验结果表明,该方法在快速提取运动目标前景区域的同时能够消除大部分动态背景产生的干扰,相比传统算法更适用于自然场景下的运动目标检测。展开更多
由于简单线性迭代聚类算法(Simple Linear Iterative Cluster,SLIC)只考虑了颜色和空间信息导致分割不准确且边界附着度不高,且人工预设的超像素块数也会影响后续分割效果,提出了一种基于纹理特征的自适应SLIC超像素分割算法。先使用图...由于简单线性迭代聚类算法(Simple Linear Iterative Cluster,SLIC)只考虑了颜色和空间信息导致分割不准确且边界附着度不高,且人工预设的超像素块数也会影响后续分割效果,提出了一种基于纹理特征的自适应SLIC超像素分割算法。先使用图像复杂度衡量图像分割的难易程度,根据自适应计算合适的图像分割块数,再基于SLIC算法把局部二值模式(Local Binary Patterns,LBP)纹理特征纳入相似性度量,提高SLIC算法分割精度。实验结果表明,本文方法与SLIC算法相比有更高的评价指标。展开更多
文摘树叶晃动、光照变化等自然场景下的动态背景会影响运动目标检测的准确性,区分动态背景和前景目标的变化是复杂场景下运动目标检测的首要任务。针对现有的前景提取算法逐点提取前景从而导致计算资源浪费的问题,提出了一种区域提取与改进LBP(Local Binary Patterns)纹理特征相结合的运动目标检测算法。首先,将图像分为大小相等的图像块,利用各图像块的统计特性建立核密度估计(Kernel Density Estimation,KDE)模型,并用KDE模型估计出前景区域。然后,计算前景块中所有像素点的改进LBP纹理特征直方图。最后,通过直方图匹配提取所有的前景像素实现目标的精确提取,并用概率模型更新背景。实验结果表明,该方法在快速提取运动目标前景区域的同时能够消除大部分动态背景产生的干扰,相比传统算法更适用于自然场景下的运动目标检测。