The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easi...The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easily grafted onto CF surface through covalent bonds under 5%water content.This modification led to the transformation of surface wettability of CF from hydrophilic to hydrophobic.Interestingly,the change of surface wettability resulted in substantial improvement of the modified CF properties,presenting well dispersity of collagen fibers,higher thermal stability and enhanced mechanical properties in comparison with natural CF.The degree of improvement mainly depended on the length of alkyl chain in silane.Longer alkyl chain produced strong hydrophobicity and subsequently more superior performances of the modified CF.When the length of alkyl chain increased to 18 carbon atoms,the modified CF possessed durable superhydrophobicity even exposed to aqueous solutions of different pH,UV,and organic solvents,and had excellent thermal and mechanical properties like leather fibers.In general,this work clearly revealed that the properties of CF are closely and positively related to the hydrophobicity,which is suggestive in developing new leather making technology.展开更多
Nowadays, diverse leather usage conditions and increasing demands from consumers challenge the leather industry. Traditional leather manufacturing is facing long-term challenges, including low-value threshold, confine...Nowadays, diverse leather usage conditions and increasing demands from consumers challenge the leather industry. Traditional leather manufacturing is facing long-term challenges, including low-value threshold, confined applica-tion fields, and environmental issues. Leather inherits all the biomimetic properties of natural skin such as flexibility, sanitation, cold resistance, biocompatibility, biodegradability, and other cross-domain functions, achieving unre-mitting attention in multi-functional bio-based materials. Series of researches have been devoted to creating and developing leather-based flexible multi-functional bio-materials, including antibacterial leather, conductive leather, flame-retardant leather, self-cleaning leather, aromatic leather, and electromagnetic shielding leather. In this review, we provide a comprehensive overview of the commonly used leather-based functional materials. Furthermore, the possible challenges for the development of functional leathers are proposed, and expected development directions of leather-based functional materials are discussed. This review may promote and inspire the emerging preparation and applications of leather for flexible functional bio-based materials.展开更多
The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easi...The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easily grafted onto CF surface through covalent bonds under 5%water content.This modification led to the transformation of surface wettability of CF from hydrophilic to hydrophobic.Interestingly,the change of surface wettability resulted in substantial improvement of the modified CF properties,presenting well dispersity of collagen fibers,higher thermal stability and enhanced mechanical properties in comparison with natural CF.The degree of improvement mainly depended on the length of alkyl chain in silane.Longer alkyl chain produced strong hydrophobicity and subsequently more superior performances of the modified CF.When the length of alkyl chain increased to 18 carbon atoms,the modified CF possessed durable superhydrophobicity even exposed to aqueous solutions of different pH,UV,and organic solvents,and had excellent thermal and mechanical properties like leather fibers.In general,this work clearly revealed that the properties of CF are closely and positively related to the hydrophobicity,which is suggestive in developing new leather making technology.展开更多
基金The National Natural Science Foundation of China(No.21978176).
文摘The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easily grafted onto CF surface through covalent bonds under 5%water content.This modification led to the transformation of surface wettability of CF from hydrophilic to hydrophobic.Interestingly,the change of surface wettability resulted in substantial improvement of the modified CF properties,presenting well dispersity of collagen fibers,higher thermal stability and enhanced mechanical properties in comparison with natural CF.The degree of improvement mainly depended on the length of alkyl chain in silane.Longer alkyl chain produced strong hydrophobicity and subsequently more superior performances of the modified CF.When the length of alkyl chain increased to 18 carbon atoms,the modified CF possessed durable superhydrophobicity even exposed to aqueous solutions of different pH,UV,and organic solvents,and had excellent thermal and mechanical properties like leather fibers.In general,this work clearly revealed that the properties of CF are closely and positively related to the hydrophobicity,which is suggestive in developing new leather making technology.
基金the National Natural Science Foundation of China(2207081675)Science and Technology Project of Xianyang City(Grant 2018k02-28)+3 种基金Fellowship of China Postdoctoral Science Foundation(2021M692000)Key R&D Program of Shaanxi Province(2022GY-272)Young Talent Support Program Project of Shaanxi University Science and Technology Association(20200424)Department of education’s Production-Study-Research combined innovation Funding-“Blue fire plan(Huizhou)”of 2018(CXZJHZ201801).
文摘Nowadays, diverse leather usage conditions and increasing demands from consumers challenge the leather industry. Traditional leather manufacturing is facing long-term challenges, including low-value threshold, confined applica-tion fields, and environmental issues. Leather inherits all the biomimetic properties of natural skin such as flexibility, sanitation, cold resistance, biocompatibility, biodegradability, and other cross-domain functions, achieving unre-mitting attention in multi-functional bio-based materials. Series of researches have been devoted to creating and developing leather-based flexible multi-functional bio-materials, including antibacterial leather, conductive leather, flame-retardant leather, self-cleaning leather, aromatic leather, and electromagnetic shielding leather. In this review, we provide a comprehensive overview of the commonly used leather-based functional materials. Furthermore, the possible challenges for the development of functional leathers are proposed, and expected development directions of leather-based functional materials are discussed. This review may promote and inspire the emerging preparation and applications of leather for flexible functional bio-based materials.
基金The National Natural Science Foundation of China(No.21978176).
文摘The effect of hydrophobic modification on the performances of collagen fibers(CFs)was investigated by using silane coupling agents with different alkyl chains as hydrophobic modifiers.It was found silane could be easily grafted onto CF surface through covalent bonds under 5%water content.This modification led to the transformation of surface wettability of CF from hydrophilic to hydrophobic.Interestingly,the change of surface wettability resulted in substantial improvement of the modified CF properties,presenting well dispersity of collagen fibers,higher thermal stability and enhanced mechanical properties in comparison with natural CF.The degree of improvement mainly depended on the length of alkyl chain in silane.Longer alkyl chain produced strong hydrophobicity and subsequently more superior performances of the modified CF.When the length of alkyl chain increased to 18 carbon atoms,the modified CF possessed durable superhydrophobicity even exposed to aqueous solutions of different pH,UV,and organic solvents,and had excellent thermal and mechanical properties like leather fibers.In general,this work clearly revealed that the properties of CF are closely and positively related to the hydrophobicity,which is suggestive in developing new leather making technology.