Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering application...Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.展开更多
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in...The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerica...A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V^iis/il^i (BV) frequencies are com- puted with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, sec-ondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.展开更多
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ...The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake d...In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.展开更多
A hybrid method is presented to numerically investigate the wind turbine aerodynamic characteristics.The wind turbine blade is replaced by an actuator line model.Turbulence is treated using a dynamic one-equation subg...A hybrid method is presented to numerically investigate the wind turbine aerodynamic characteristics.The wind turbine blade is replaced by an actuator line model.Turbulence is treated using a dynamic one-equation subgrid-scale model in large eddy simulation.Detailed information on the basic characteristics of the wind turbine wake is obtained and discussed.The rotor aerodynamic performance agrees well with the measurements.The actuator line method large-eddy simulation(ALM-LES)technique demonstrates its high potential in providing accurate load prediction and high resolution of turbulent fluctuations in the wind turbine wakes and the interactions within a feasible cost.展开更多
It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively ...It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively coarse grid,that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer.In this study,an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the strain-rate tensor is proposed to calculate the eddy viscosity coefficient in the subgrid-scale(SGS)model.The LES code is realized with a second-order finite-difference scheme,the scale-dependent dynamic SGS stress model,the equilibrium wall stress model,and the proposed correction scheme.Very-high-Reynolds-number ABL flow simulation under the neutral stratification condition is conducted to assess the performance of the method in predicting the mean and fluctuating characteristics of the rough-wall turbulence.It is found that the logarithmic profile of the mean streamwise velocity and some key features of large-scale coherent structures can be reasonably predicted by adopting the proposed correction method and the low-order numerical scheme.展开更多
Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics h...Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range. By decomposing the subgrid energy transfer and nonlinear interaction into ‘forward’ and ‘backward’ groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups.展开更多
The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type n...The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5 ×104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1 .Ode. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed.展开更多
Introducing the surface properties [initial vortex, ground temperature and surface momentum impact height (SMIH)] for the boundary conditions, dust-devil-scale large eddy simulations (LES) were carried out. Given ...Introducing the surface properties [initial vortex, ground temperature and surface momentum impact height (SMIH)] for the boundary conditions, dust-devil-scale large eddy simulations (LES) were carried out. Given three parameters of initial vortex, ground temperature and the SMIH based on Sinclair's observation, the dust devil physical characteristics, such as maximum tangential velocity, updraft velocity, pressure drop in the inner core region, and even reverse flow at the top of the core region, are predicted, and are found to be close to the observations, thus demonstrating the ability of the simulation. The physical characteristics of different modeled dust devils are reproduced and compared to the values predicted by Renno et al.' theory. Even for smaller temperature differences or weaker buoyancy, severe dust devils may be formed by strong incipient vortices. It is also indicated that SMIH substantially affects the near-surface shape of terrestrial dust devils.展开更多
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a seco...Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.展开更多
A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structu...A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.展开更多
The configuration and aerodynamic performance of the inlet system are important aspects in the process of installing a gas turbine on a naval vessel. Under the requirements, large eddy simulation (LES) is used to simu...The configuration and aerodynamic performance of the inlet system are important aspects in the process of installing a gas turbine on a naval vessel. Under the requirements, large eddy simulation (LES) is used to simulate the three-dimensional fluid flow in the wave blocker of a marine inlet filter. The Smagorinsky-Lilly sub-grid model was used to model motions of small-scale structures. During numerical simulation, the SIMPLE algorithm was applied. The central-differencing spatial discretization scheme and the second order accuracy finite difference for the temporal discretization were used. Simulation gives satisfactory distribution of the vorticity fields and turbulent kinetic energy.Compared with the k-ε turbulent model, the results of LES are better for the distribution of parameters. The results of experimental study in a small-scale wind tunnel indicate that numerical calculation has higher accuracy. Therefore, the methods used are worthy of reference and introduction for the design of an inlet system.展开更多
Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling facto...Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.展开更多
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large edd...A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.展开更多
The aerodynamic performances and flow features of the capsule/rigid disk-gap-band(DGB)parachute system from the Mach number 1.8 to 2.2 are studied.We use the adaptive mesh refinement(AMR),the hybrid tuned center-diffe...The aerodynamic performances and flow features of the capsule/rigid disk-gap-band(DGB)parachute system from the Mach number 1.8 to 2.2 are studied.We use the adaptive mesh refinement(AMR),the hybrid tuned center-difference and weighted essentially non-oscillatory(TCD-WENO)scheme,and the large-eddy simulation(LES)with the stretched-vortex subgrid model.The simulations reproduce complex interaction of the flow structures,including turbulent wakes and bow shocks,as well as bow shocks and expansion waves.The results show that the calculated aerodynamic drag coefficient agrees well with the previou simulation.Both the aerodynamic drag coefficient and the aerodynamic drag oscillation of the parachute system decrease with the increase of the initial Mach number of the fluid.It is found that the position and angle of the bow shock ahead of the canopy change as the Mach number increases,which makes the flow inside the canopy and the turbulent wake behind the canopy more complex and unstable.展开更多
Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fracti...Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.展开更多
The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are...The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50979059)
文摘Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.
基金Supported by the National Natural Science Foundation of China(10772082)~~
文摘The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金Project supported by the Boeing-COMAC Aviation Energy Conservation and Emissions Reduction Technology Center(AECER)
文摘A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V^iis/il^i (BV) frequencies are com- puted with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, sec-ondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.
文摘The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金Project supported by the National Key Research and Development Program of China(Nos.2019YFE0192600,2017YFE0132000,and 2019YFB1503700)the National Natural Science Foundation of China(Nos.51761135012 and 11872248)。
文摘In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.
基金funded jointly by the National Basic Research Program of China(″973″Program)(No.2014CB046200)the Jiangsu Provincial Natural Science Foundation(No.BK20140059)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)the EU Seventh Framework Program(No.FP7-PEOPLE-2010-IRSES-269202)
文摘A hybrid method is presented to numerically investigate the wind turbine aerodynamic characteristics.The wind turbine blade is replaced by an actuator line model.Turbulence is treated using a dynamic one-equation subgrid-scale model in large eddy simulation.Detailed information on the basic characteristics of the wind turbine wake is obtained and discussed.The rotor aerodynamic performance agrees well with the measurements.The actuator line method large-eddy simulation(ALM-LES)technique demonstrates its high potential in providing accurate load prediction and high resolution of turbulent fluctuations in the wind turbine wakes and the interactions within a feasible cost.
基金Project supported by the National Natural Science Foundation of China(No.11490551)the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-k13 and lzujbky-2018-k07)
文摘It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively coarse grid,that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer.In this study,an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the strain-rate tensor is proposed to calculate the eddy viscosity coefficient in the subgrid-scale(SGS)model.The LES code is realized with a second-order finite-difference scheme,the scale-dependent dynamic SGS stress model,the equilibrium wall stress model,and the proposed correction scheme.Very-high-Reynolds-number ABL flow simulation under the neutral stratification condition is conducted to assess the performance of the method in predicting the mean and fluctuating characteristics of the rough-wall turbulence.It is found that the logarithmic profile of the mean streamwise velocity and some key features of large-scale coherent structures can be reasonably predicted by adopting the proposed correction method and the low-order numerical scheme.
文摘Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range. By decomposing the subgrid energy transfer and nonlinear interaction into ‘forward’ and ‘backward’ groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072005 and 10921202)the Fundamental Research Funds for the Central Universities,China(Grant No.3132013029)
文摘The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5 ×104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1 .Ode. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed.
文摘Introducing the surface properties [initial vortex, ground temperature and surface momentum impact height (SMIH)] for the boundary conditions, dust-devil-scale large eddy simulations (LES) were carried out. Given three parameters of initial vortex, ground temperature and the SMIH based on Sinclair's observation, the dust devil physical characteristics, such as maximum tangential velocity, updraft velocity, pressure drop in the inner core region, and even reverse flow at the top of the core region, are predicted, and are found to be close to the observations, thus demonstrating the ability of the simulation. The physical characteristics of different modeled dust devils are reproduced and compared to the values predicted by Renno et al.' theory. Even for smaller temperature differences or weaker buoyancy, severe dust devils may be formed by strong incipient vortices. It is also indicated that SMIH substantially affects the near-surface shape of terrestrial dust devils.
基金The project supported by the National Science Fund for Distinguished Scholars (10125210)the Special Funds for Major State Basic Research Project (G1999032801)the National Natural Science Foundation of China (19772062)
文摘Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and 51576182)
文摘A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.
文摘The configuration and aerodynamic performance of the inlet system are important aspects in the process of installing a gas turbine on a naval vessel. Under the requirements, large eddy simulation (LES) is used to simulate the three-dimensional fluid flow in the wave blocker of a marine inlet filter. The Smagorinsky-Lilly sub-grid model was used to model motions of small-scale structures. During numerical simulation, the SIMPLE algorithm was applied. The central-differencing spatial discretization scheme and the second order accuracy finite difference for the temporal discretization were used. Simulation gives satisfactory distribution of the vorticity fields and turbulent kinetic energy.Compared with the k-ε turbulent model, the results of LES are better for the distribution of parameters. The results of experimental study in a small-scale wind tunnel indicate that numerical calculation has higher accuracy. Therefore, the methods used are worthy of reference and introduction for the design of an inlet system.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and51576182)
文摘Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479116 and 11272213)
文摘A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.
基金Project supported by the National Natural Science Foundation of China(No.11372068)the National Basic Research Program of China(973 Program)(No.2014CB744104)。
文摘The aerodynamic performances and flow features of the capsule/rigid disk-gap-band(DGB)parachute system from the Mach number 1.8 to 2.2 are studied.We use the adaptive mesh refinement(AMR),the hybrid tuned center-difference and weighted essentially non-oscillatory(TCD-WENO)scheme,and the large-eddy simulation(LES)with the stretched-vortex subgrid model.The simulations reproduce complex interaction of the flow structures,including turbulent wakes and bow shocks,as well as bow shocks and expansion waves.The results show that the calculated aerodynamic drag coefficient agrees well with the previou simulation.Both the aerodynamic drag coefficient and the aerodynamic drag oscillation of the parachute system decrease with the increase of the initial Mach number of the fluid.It is found that the position and angle of the bow shock ahead of the canopy change as the Mach number increases,which makes the flow inside the canopy and the turbulent wake behind the canopy more complex and unstable.
基金supported by the National Natural Science Foundation of China (Grant No. 51179058)National Science Fund for Distinguished Young Scholars (Grants No. 51125034 and 50925932)+1 种基金the Special Fund for Public Welfare of the Water Resources Ministry of China (Grant No. 201201017)the 111 Project (Grant No. B12032)
文摘Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.
文摘The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.