Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arrange...Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arranged in a straight line to share the field of view and reduce the view angle of every camera. For detecting doping micro particles with the designed mosaic line-scan camera, a detection algorithm of the target's location in FPGA is proposed. Finally, the practicability and stability of the system were validated experimentally. The results of the experiment show that the camera can get images clearly with less light loss and can accurately distinguish the target and the background.展开更多
A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of t...A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of the integrating sphere and requirement of the strip uniform illumination region. This system was called dome light. White light LED array light sources were used for uniform illumi- nation. The LEDs were filtrated to composite array light source based on coefficient of variation of a single LED. The standard white board and SG color checkers were used in the line-scan CCD imaging experiments under the dome light and ordinary illumination light source. The average color difference (AE) of SG color checkers in CIELAB space was 2. 091 under the dome light and 2. 286 under ordinary illumination light source respectively. Experimental results indicate that the dome light can satisfy illumination uniformity and color rendering consistency for line-scan CCD and provide a standard light source for uniform calibration of different cameras.展开更多
As the development of machine vision technology, the color line-scan system is widely applied in the on-line inspection. Due to the non-uniform gray scale and color distortion of the image acquired by the system, the ...As the development of machine vision technology, the color line-scan system is widely applied in the on-line inspection. Due to the non-uniform gray scale and color distortion of the image acquired by the system, the image correction is needed to reduce the problem of image processing and the stability system. Based on reasons mentioned above, a method that using polynomial fitting to correct the image is presented to solve the problem in this paper. The method has been used in the automatic optical inspection of PCB, and has been proved to be effective. So this method will have a potential application to the development of the color line-scan machine vision system.展开更多
研究不同性型蓖麻(Ricinus communis L.)花粉的育性,尤其是雌性系的花粉育性,对于蓖麻杂交育种工作意义重大。本研究首先利用TTC染色法和花粉萌发法分别检测了镶嵌型雌性系、两性系共6种蓖麻种质材料花粉的生活力,随后通过扫描电子显微...研究不同性型蓖麻(Ricinus communis L.)花粉的育性,尤其是雌性系的花粉育性,对于蓖麻杂交育种工作意义重大。本研究首先利用TTC染色法和花粉萌发法分别检测了镶嵌型雌性系、两性系共6种蓖麻种质材料花粉的生活力,随后通过扫描电子显微镜观察了他们的花粉形态,并利用SPSS软件分析了其形态特征值。结果显示:TTC染色和花粉萌发结果基本一致,不同材料间花粉生活力差异显著,蓖麻镶嵌型雌性系HCH3花粉生活力最大(96.97%)、镶嵌型雌性系HCH1花粉生活力次之。两种性型的花粉均呈现为单粒,长球形,赤道面观为长球形,极面观为三裂近圆形,中等大小(花粉极轴长为30.17~42.07μm),属于N_(3)P_(4)C_(3)型花粉。花粉外壁为网状纹饰,脊顶部具有密集的瘤状突起。然而,不同材料间花粉的极轴长、网眼直径、网脊宽度、单位面积网眼数形态值上差异显著。主成分析和聚类分析将6份蓖麻材料按花粉大小分为两类。本研究为蓖麻的花粉可育性和杂交选育提供了新的数据支撑。展开更多
基金National Natural Science Foundation of China(No.61227003,61171179,61302159)Natural Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Research Project Supported by Shanxi Scholarship Council of China(No.2013-083)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,China
文摘Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arranged in a straight line to share the field of view and reduce the view angle of every camera. For detecting doping micro particles with the designed mosaic line-scan camera, a detection algorithm of the target's location in FPGA is proposed. Finally, the practicability and stability of the system were validated experimentally. The results of the experiment show that the camera can get images clearly with less light loss and can accurately distinguish the target and the background.
基金Supported by the National Natural Science Foundation of China(61078048)
文摘A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of the integrating sphere and requirement of the strip uniform illumination region. This system was called dome light. White light LED array light sources were used for uniform illumi- nation. The LEDs were filtrated to composite array light source based on coefficient of variation of a single LED. The standard white board and SG color checkers were used in the line-scan CCD imaging experiments under the dome light and ordinary illumination light source. The average color difference (AE) of SG color checkers in CIELAB space was 2. 091 under the dome light and 2. 286 under ordinary illumination light source respectively. Experimental results indicate that the dome light can satisfy illumination uniformity and color rendering consistency for line-scan CCD and provide a standard light source for uniform calibration of different cameras.
文摘As the development of machine vision technology, the color line-scan system is widely applied in the on-line inspection. Due to the non-uniform gray scale and color distortion of the image acquired by the system, the image correction is needed to reduce the problem of image processing and the stability system. Based on reasons mentioned above, a method that using polynomial fitting to correct the image is presented to solve the problem in this paper. The method has been used in the automatic optical inspection of PCB, and has been proved to be effective. So this method will have a potential application to the development of the color line-scan machine vision system.
文摘研究不同性型蓖麻(Ricinus communis L.)花粉的育性,尤其是雌性系的花粉育性,对于蓖麻杂交育种工作意义重大。本研究首先利用TTC染色法和花粉萌发法分别检测了镶嵌型雌性系、两性系共6种蓖麻种质材料花粉的生活力,随后通过扫描电子显微镜观察了他们的花粉形态,并利用SPSS软件分析了其形态特征值。结果显示:TTC染色和花粉萌发结果基本一致,不同材料间花粉生活力差异显著,蓖麻镶嵌型雌性系HCH3花粉生活力最大(96.97%)、镶嵌型雌性系HCH1花粉生活力次之。两种性型的花粉均呈现为单粒,长球形,赤道面观为长球形,极面观为三裂近圆形,中等大小(花粉极轴长为30.17~42.07μm),属于N_(3)P_(4)C_(3)型花粉。花粉外壁为网状纹饰,脊顶部具有密集的瘤状突起。然而,不同材料间花粉的极轴长、网眼直径、网脊宽度、单位面积网眼数形态值上差异显著。主成分析和聚类分析将6份蓖麻材料按花粉大小分为两类。本研究为蓖麻的花粉可育性和杂交选育提供了新的数据支撑。