针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛...针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛初期采用CMA算法,以确保算法可以较快收敛。在收敛之后切换至DD-LMS算法,以进一步降低稳态误差。通过设定阈值来切换算法,取相邻多次迭代误差的平均值作为算法的切换值,以确保算法切换时机的合理性。另外,引入Softsign变步长函数并加入3个参数对该函数进行改进,使得Softsign变步长函数可以依据不同信道环境设定最佳参数,同时提高算法的收敛速度。仿真结果表明,在卫星通用信道条件下,所提算法的收敛迭代次数约为1 000次,稳态误差为-12 dB,在信噪比为15 dB时,误码率为1×10~(-6)。与相关算法对比,所提算法的收敛速度较高,误码率和稳态误差较低。展开更多
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa...为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。展开更多
针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并...针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。展开更多
短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征...短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。展开更多
针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的...针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。展开更多
文摘为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。
文摘针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。
文摘短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。
文摘针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。