期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
一种融合GA和LSTM的边坡变形预测优化网络模型及其应用
1
作者 肖海平 王顺辉 +2 位作者 陈兰兰 范永超 万俊辉 《大地测量与地球动力学》 CSCD 北大核心 2024年第5期491-496,共6页
考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预... 考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预测时序数据的优势。以海明矿业露天采场边坡为研究对象,分别采用BP神经网络模型、LSTM网络模型以及GA-LSTM网络模型对边坡监测点GNSS49变形进行预测分析,并对比各模型达到收敛条件的时间。结果表明,GA-LSTM模型与其他模型达到同一收敛条件的时间差异不大,GA-LSTM模型的拟合准确度在0.1~0.2 mm,是LSTM神经网络模型的5~7倍,是BP神经网络模型的10~20倍,具有较高的精度和稳定性,其预测值与实际监测数据基本一致,可为矿山边坡的安全生产、管理以及决策控制提供科学依据。 展开更多
关键词 露天矿边坡 遗传算法 lstm神经网络 优化网络模型 变形预测
下载PDF
基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法
2
作者 张剑 肖禹涵 +1 位作者 周忠易 杨俊龙 《石油钻探技术》 CAS CSCD 北大核心 2024年第5期82-90,共9页
为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE ... 为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE 58-32井和FORGE 58-62井的2个公开数据集对建立的模型进行验证,并采用平均绝对误差、均方根误差、决定系数和均方误差等指标进行模型性能评估。研究结果表明,所提出TDCSO-CNN-Bi-LSTM模型平均绝对误差、均方误差和均方根误差等3个关键性能指标较好,其中决定系数大于0.980,明显优于现有的LSTM、GRU、CNN-LSTM、CNN-Bi-LSTM等方法。研究表明,所提出的TDCSO-CNN-Bi-LSTM模型在井底钻压预测方面具有出色的准确性,能够实现实时监测,并与自动钻进系统集成,实现对钻压的精准控制,不仅提高了钻井效率,还降低了钻井成本,对未来的钻井作业具有重要的实际应用价值。 展开更多
关键词 井底钻压 lstm 神经网络 优化算法 模型优化
下载PDF
基于改进LSTM神经网络的电动汽车充电负荷预测 被引量:2
3
作者 林祥 张浩 +1 位作者 马玉立 陈良亮 《现代电子技术》 北大核心 2024年第6期97-101,共5页
当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、... 当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、温度、工作日、节假日等因素对电动汽车充电负荷的影响,采用三标度层次分析法分析各影响因素权重;其次,建立LSTM神经网络预测模型,通过真实数据训练得到用于预测的LSTM神经网络模型,结合影响因素权重分析结果对预测模型进行修正,得到最终的改进LSTM神经网络负荷预测模型;最后,采用常州某小区的真实数据对所提预测方法进行试验验证。结果表明,所提方法可以实现电动汽车充电负荷的精确预测,且负荷预测结果可为有序充电策略研究提供参考。 展开更多
关键词 电动汽车 充电负荷预测 lstm神经网络模型 影响因素权重 层次分析法 有序充电
下载PDF
基于LSTM神经网络的烟丝水分恒定控制系统设计
4
作者 王海龙 王新辉 +2 位作者 张志勇 朱岩 栾松年 《计算机测量与控制》 2024年第11期177-183,189,共8页
在烟丝加工过程中,水分分布受到温度、湿度多个因素的影响,控制系统无法准确反映整体水分情况;为全面提高加工型香烟的质量水平,设计基于LSTM神经网络的烟丝水分恒定控制系统;部署Profibus控制总线,并在线路体系中连接水分检测仪与水分... 在烟丝加工过程中,水分分布受到温度、湿度多个因素的影响,控制系统无法准确反映整体水分情况;为全面提高加工型香烟的质量水平,设计基于LSTM神经网络的烟丝水分恒定控制系统;部署Profibus控制总线,并在线路体系中连接水分检测仪与水分恒定器,完成烟丝水分恒定控制系统的硬件设计;在系统软件设计方面,构建LSTM神经网络单元,根据烟叶吸湿能力分析条件,求解具体的水分分布模型,实现基于LSTM神经网络的烟丝水分模型建模;分别计算烟叶出口湿度与出口温度,并联合传递函数逼近参量与恒定时滞参数,完成对控制参数的整定处理,再联合相关应用部件,实现基于LSTM神经网络的烟丝水分恒定控制系统设计;实验结果表明,LSTM神经网络模型作用下,生丝含水量被稳定控制在13%~18%数值之间,不会因水分过量问题而导致香烟质量水平无法达到实际加工标准。 展开更多
关键词 lstm神经网络 烟丝水分 恒定控制 PROFIBUS总线 吸湿能力 水分模型 出口湿度 出口温度
下载PDF
基于ARIMA-PSO-LSTM的太阳能预测 被引量:1
5
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
下载PDF
面向电主轴热误差预测建模分析的改进IGWO-LSTM算法 被引量:1
6
作者 马能杰 王洪申 《机床与液压》 北大核心 2024年第1期11-16,共6页
针对电主轴复杂运行工况下的热误差建模问题,提出一种基于改进灰狼优化算法(IGWO)的LSTM神经网络参数预测模型IGWO-LSTM。通过对灰狼算法收敛因子a计算方法进行优化来提高算法寻优性能;通过IGWO算法的适应度函数与LSTM隐含层节点数组成... 针对电主轴复杂运行工况下的热误差建模问题,提出一种基于改进灰狼优化算法(IGWO)的LSTM神经网络参数预测模型IGWO-LSTM。通过对灰狼算法收敛因子a计算方法进行优化来提高算法寻优性能;通过IGWO算法的适应度函数与LSTM隐含层节点数组成的IGWO-LSTM闭环系统对电主轴热误差预测模型进行训练和预测,避免陷入局部最优,同时提升模型预测精度。为了验证该算法性能,将它与改进前的算法进行对比,通过求取平均绝对误差、平均绝对百分比误差以及均方根误差对这两种神经网络进行评价,结果显示:文中算法的3种指标均优于改进前的LSTM模型,具有更好的热误差预测准确性和全局搜索能力。 展开更多
关键词 电主轴 热误差 IGWO-lstm 神经网络预测模型
下载PDF
基于Transformer-LSTM的闽南语唇语识别
7
作者 曾蔚 罗仙仙 王鸿伟 《泉州师范学院学报》 2024年第2期10-17,共8页
针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文... 针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文本序列预测.最后,在自建闽南语唇语数据集上进行实验.实验结果表明:模型能有效地提高唇语识别的准确率. 展开更多
关键词 唇语识别 闽南语 TRANSFORMER 长短时记忆网络(lstm) 用时空卷积神经网络 注意力机制 端到端模型
下载PDF
基于SARIMA-LSTM组合模型的油气集输系统能耗预测
8
作者 贺思宸 陈由旺 +4 位作者 朱英如 侯磊 刘珈铨 满建峰 张鑫儒 《油气田地面工程》 2024年第7期82-89,共8页
油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差... 油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差分自回归积分滑动平均(SARIMA)和长短期记忆(LSTM)神经网络的组合预测模型。根据S油田M环状掺水油气集输系统6年的运行数据,设计组合模型的网络结构,训练组合模型的网络参数。研究结果表明:与传统的SARIMA模型和LSTM神经网络相比,组合模型对三个能耗指标的预测准确性显著提高,可为企业调整生产运行方案和优化能源管控方案提供指导和数据支持。 展开更多
关键词 油气集输系统 能耗预测 SARIMA模型 lstm神经网络 组合模型
下载PDF
基于LSTM神经网络的内蒙古自治区GDP预测
9
作者 武阳 罗季康 +2 位作者 赵贞 谢晓波 庞晶 《内蒙古工业大学学报(自然科学版)》 2024年第4期296-301,共6页
通过使用国家统计局公开发布的内蒙古自治区1992—2022年的年度GDP数据,基于长短时记忆神经网络(LSTM)分别构建了两步预测模型和三步预测模型进行对比,并在网络结构中添加了Dropout模块,避免出现过拟合的情况,同时提高模型的预测能力。... 通过使用国家统计局公开发布的内蒙古自治区1992—2022年的年度GDP数据,基于长短时记忆神经网络(LSTM)分别构建了两步预测模型和三步预测模型进行对比,并在网络结构中添加了Dropout模块,避免出现过拟合的情况,同时提高模型的预测能力。根据预测值和真实值的结果,使用平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)指标来评价两个模型的优劣。经实验结果表明:LSTM两步预测模型在测试集样本中R2值可达到0.93,证明该模型预测结果拟合更好,有很强的泛化能力,可用于内蒙古自治区GDP的短期预测;应用LSTM两步预测模型预测内蒙古自治区2023—2024年的GDP值分别为24805.60亿元和25131.69亿元,能够看出该地区未来GDP增长良好,可为政府部门定制宏观经济计划提供参考。 展开更多
关键词 GDP预测 lstm神经网络模型 机器学习
下载PDF
基于LSTM算法的冷连轧机架振动动态预警
10
作者 张海辉 《锻压装备与制造技术》 2024年第5期144-146,共3页
为了克服传统研究方法只根据工艺反应机制开展理论建模的缺陷,建立一种基于长短期记忆网络(LSTM)算法的冷连轧机架振动预警模型。网络预警结果准确性与效率也受到超参数直接影响,选择验证集均方误差作为目标函数,通过网格搜索方式寻优... 为了克服传统研究方法只根据工艺反应机制开展理论建模的缺陷,建立一种基于长短期记忆网络(LSTM)算法的冷连轧机架振动预警模型。网络预警结果准确性与效率也受到超参数直接影响,选择验证集均方误差作为目标函数,通过网格搜索方式寻优计算获得最佳超参数组合结果,构建最佳振动预警模型。研究结果表明:第一卷在310s形成了剧烈振动,第二卷位于开轧后615s形成了比第一卷更大的峰值,表现为剧烈振动特征。随着报警阈值的降低,第一卷和第二卷的提前报警时间均表现出单调增加的变化规律,符合实际情况。该研究对提高冷连轧机工作稳定性具有很好的实际指导意义。 展开更多
关键词 冷连轧 轧机振动 lstm神经网络 预报 模型
下载PDF
基于APSO的LSTM神经网络模型优化方法研究
11
作者 袁琳娜 杨良斌 《重庆大学学报》 CAS CSCD 北大核心 2024年第8期103-111,共9页
多隐含层长短期记忆神经网络(long short-term memory,LSTM)循环神经网络权值与阈值更新依赖梯度下降算法,模型收敛速度慢,网络节点的权值计算易出现局部极值,导致LSTM神经网络模型不能得到全局最优,网络模型泛化能力下降,限制LSTM循环... 多隐含层长短期记忆神经网络(long short-term memory,LSTM)循环神经网络权值与阈值更新依赖梯度下降算法,模型收敛速度慢,网络节点的权值计算易出现局部极值,导致LSTM神经网络模型不能得到全局最优,网络模型泛化能力下降,限制LSTM循环神经网络的应用。因此,利用加速粒子群优化算法(accelerated particle swarm optimization,APSO)的优化能力,提出一种改进LSTM神经网络模型。该模型将均方根误差设计为适宜值函数,并利用APSO算法构建寻优策略,对各神经元节点间的权值进行全局优化,提升模型的泛化和预测性能。通过经典DataMarket及UCI数据集的实验结果表明,APSO-LSTM模型的预测精度较传统LSTM模型有显著提升,验证了APSO-LSTM模型的有效性和实用性。 展开更多
关键词 神经网络 权值优化 适宜值 APSO-lstm模型
下载PDF
基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究
12
作者 周泽楷 侯宏娟 +1 位作者 孙莉 靳涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期415-422,共8页
针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型。首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-... 针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型。首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-时间特征建立卷积神经网络-双向长短期记忆神经网络模型。在与单一神经网络模型长短期记忆神经网络及双向长短期记忆神经网络进行详细比较和分析后,结果表明,该模型相较于传统神经网络模型在精确度上存在明显提升,验证了本模型在太阳能供暖负荷预测中的有效性。 展开更多
关键词 太阳能供暖 卷积神经网络 长短期记忆网络 热负荷 神经网络模型
原文传递
融合PMV物理方程和Attention-LSTM神经网络的铁路客站旅客舒适度模型研究
13
作者 刘小燕 邵长虹 +4 位作者 李瑞 李超 陈瑞凤 徐春婕 梁博 《中国铁路》 北大核心 2024年第5期16-24,共9页
铁路客站的舒适度直接关系着旅客的出行体验和满意度。选取聊城西站作为研究对象,采用PMV物理方程、Attention-LSTM神经网络模型以及PMV&Attention-LSTM融合模型3种方法,针对旅客舒适度开展综合评估与分析。在模型构建过程中,运用... 铁路客站的舒适度直接关系着旅客的出行体验和满意度。选取聊城西站作为研究对象,采用PMV物理方程、Attention-LSTM神经网络模型以及PMV&Attention-LSTM融合模型3种方法,针对旅客舒适度开展综合评估与分析。在模型构建过程中,运用了标准化处理、数据集划分、网格搜索交叉验证等技术寻找最佳超参数,并记录了训练过程中的损失函数和均方误差。在模型预测中,充分考虑了温度、湿度、风速、空气质量、二氧化碳、光照、噪声等环境因素对旅客舒适度的影响。对比3种预测方法,结果显示,融合模型在考虑多维环境数据时可更准确地反映舒适度水平,表明该模型更适应铁路客站的复杂环境条件,可为提高候车厅舒适性提供更为可靠的参考依据。 展开更多
关键词 铁路客站 旅客舒适度 PMV Attention-lstm神经网络 融合模型 聊城西站
下载PDF
LSTM在国家间双边关系预测中的应用 被引量:1
14
作者 练良珏 胡梅婷 邹昆 《福建电脑》 2024年第6期64-67,共4页
为预测国家之间双边关系的演化趋势,本文构建了一个国家之间“合作-冲突”的预测模型。该模型基于自注意力机制的长短期神经网络,以国家事件动作为特征,根据最近发生的一系列事件,预测下一个时间单元的冲突事件和合作事件的数量并以戈... 为预测国家之间双边关系的演化趋势,本文构建了一个国家之间“合作-冲突”的预测模型。该模型基于自注意力机制的长短期神经网络,以国家事件动作为特征,根据最近发生的一系列事件,预测下一个时间单元的冲突事件和合作事件的数量并以戈尔德斯坦量评分进行衡量。通过公开的数据集验证模型的预测效果,结果表明本文模型具有较好的预测效果与国家关系判断能力。 展开更多
关键词 国家间关系 冲突与合作 预测模型 长短期神经网络
下载PDF
基于SSA-PSO-LSTM模型的电离层TEC预报
15
作者 郑泽辰 黄志标 《北京测绘》 2024年第5期786-792,共7页
受多种因素影响,电离层电子总含量(TEC)时间序列具有非线性、非平稳性特征,为提升长短期记忆(LSTM)神经网络模型在电离层TEC预报中的精度,本文在该神经网络模型的基础上,引入奇异谱分析(SSA)与粒子群优化(PSO)算法,构建了新的SSA-PSO-L... 受多种因素影响,电离层电子总含量(TEC)时间序列具有非线性、非平稳性特征,为提升长短期记忆(LSTM)神经网络模型在电离层TEC预报中的精度,本文在该神经网络模型的基础上,引入奇异谱分析(SSA)与粒子群优化(PSO)算法,构建了新的SSA-PSO-LSTM模型。一方面,利用了SSA对TEC时间序列进行数据预处理;另一方面,利用粒子群优化算法改进LSTM神经网络模型参数。选用欧洲地球参考框架(EUREF)提供的格网点电离层TEC时间序列数据进行实验,实验结果表明,在磁平静期与磁暴期,该组合模型的TEC预报结果均方根误差分别为0.28个总电子含量单位(TECu)、0.83个TECu,平均相对精度分别为96.35%、91.33%,均优于对比模型,验证了本文提出的组合预报模型的有效性与优越性。平均相对精度分别为96.35%、91.33%,均优于对比模型,验证了本文提出的组合预报模型的有效性与优越性。 展开更多
关键词 电离层电子总含量(TEC) 奇异谱分析(SSA) 粒子群优化(PSO) lstm神经网络模型 预报精度
下载PDF
基于EMD-SSA-LSTM模型的城市轨道交通站点客流预测
16
作者 何勇 张开雯 《武汉理工大学学报(交通科学与工程版)》 2024年第5期829-834,840,共7页
文中基于EMD和SSA算法,对LSTM神经网络进行优化,提出一种新的组合预测模型.利用EMD算法降低数据噪点的干扰,将短时客流数据分解为多个IMF和一个残差.利用SSA算法优化LSTM网络的隐含层神经元个数、学习率以及迭代次数.利用优化后的LSTM... 文中基于EMD和SSA算法,对LSTM神经网络进行优化,提出一种新的组合预测模型.利用EMD算法降低数据噪点的干扰,将短时客流数据分解为多个IMF和一个残差.利用SSA算法优化LSTM网络的隐含层神经元个数、学习率以及迭代次数.利用优化后的LSTM模型对各个IMF进行预测,由各IMF的预测结果求和得到最终的预测值.利用杭州市客流量最大的站点火车东站客流量数据进行验证,并与BP神经网络、LSTM神经网络以及SSA-LSTM模型的预测结果相比较.结果表明:在针对工作日和非工作日的短时客流预测中,EMD-SSA-LSTM组合模型的预测误差均低于其他3种模型,且工作日与非工作日的预测值与真实值之间可决系数分别为0.9995,0.998,验证了本文提出的组合模型的有效性,并且提高了预测精度. 展开更多
关键词 短时客流预测 EMD和SSA算法 lstm神经网络 组合模型
下载PDF
Stock Price Prediction Based on the Bi-GRU-Attention Model
17
作者 Yaojun Zhang Gilbert M. Tumibay 《Journal of Computer and Communications》 2024年第4期72-85,共14页
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest... The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction. 展开更多
关键词 Machine Learning Attention Mechanism lstm neural network ABiGRU model Stock Price Prediction
下载PDF
基于Bayes和LSTM神经网络模型的基坑变形值预测研究
18
作者 曹玉江 《市政技术》 2024年第11期119-126,共8页
为了提高基坑变形预测的准确性和可靠性,提出了一种基于贝叶斯方法(Bayes)和长短期记忆(Long Short-Term Memory,LSTM)神经网络的复合模型,并结合杭州市文一西路改造工程现场监测数据,比较了Bayes-LSTM模型与其他预测模型在大跨度基坑... 为了提高基坑变形预测的准确性和可靠性,提出了一种基于贝叶斯方法(Bayes)和长短期记忆(Long Short-Term Memory,LSTM)神经网络的复合模型,并结合杭州市文一西路改造工程现场监测数据,比较了Bayes-LSTM模型与其他预测模型在大跨度基坑上方的地表沉降与水平位移数据预测误差。研究结果表明:与LSTM模型和支持向量机(SVM)模型相比,Bayes-LSTM模型对基坑上方地表沉降的预测精度分别提高了1.0和1.26,证明了Bayes-LSTM模型在地表沉降预测方面表现出较高的预测精度和泛化能力。该研究成果可为大跨度基坑施工安全管理提供决策与支持。 展开更多
关键词 基坑沉降 贝叶斯网络 lstm神经网络 预测模型
下载PDF
结合EKF与LSTM神经网络的授时/守时算法
19
作者 徐涛 郭宸宇 赵程 《全球定位系统》 CSCD 2024年第5期126-132,共7页
本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误... 本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误差,提取北斗卫星前N t_(CN) k fre(k)k v(k)秒秒脉冲的累计时间、时刻的晶振频率、时刻晶振变化速率;并将经过EKF输出的历史数据作为训练集,输入到长短期记忆(long short-term memory,LSTM)神经网络中建立预测模型;通过控制变量法进行算法参数调试,找到最适合的预测模型.试验结果表明:授时算法输出的授时信号精度最大误差为34 ns;授时算法8 h累计误差为1.001μs,平均误差小于0.125μs/h.有效地提高了系统授时和守时精度. 展开更多
关键词 扩展卡尔曼滤波(EKF) 长短期记忆网络(lstm) 时间同步 卫星授时 晶振建模
下载PDF
基于CNN-LSTM的车辆悬挂系统故障识别方法研究
20
作者 梁君海 李智强 +1 位作者 葛天 郑志伟 《铁路计算机应用》 2024年第2期1-6,共6页
高速铁路车辆(简称:车辆)运行条件恶劣多变,车辆悬挂系统的可靠性关系到行车安全和乘坐舒适性。当车辆的悬挂系统发生故障时,振动信号呈现非线性、非平稳的特征。为此,提出了一种基于卷积神经网络(CNN,Convolutional Neural Network)-... 高速铁路车辆(简称:车辆)运行条件恶劣多变,车辆悬挂系统的可靠性关系到行车安全和乘坐舒适性。当车辆的悬挂系统发生故障时,振动信号呈现非线性、非平稳的特征。为此,提出了一种基于卷积神经网络(CNN,Convolutional Neural Network)-长短时记忆(LSTM,Long Short-Term Memory)模型的车辆悬挂系统故障识别方法。通过SIMPACK平台建立了包含悬挂系统的车辆-轨道耦合动力学模型,获得了车辆系统各部件在健康状态及各类故障状态下的振动信号;以与故障元件关联部件的振动加速度信号作为模型输入,通过构建的CNN-LSTM模型对时序信号进行特征提取和分类预测,进而实现对车辆悬挂系统的故障识别;通过构建不同工况的故障数据集对该方法进行评估。试验结果表明,该方法在速度等级相同的情况下,故障识别准确率可达98%;在速度等级不同的情况下,故障识别准确率可达99%,验证了该方法的有效性。 展开更多
关键词 高速铁路车辆 悬挂系统 卷积神经网络 长短时记忆模型 故障识别
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部