A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswi...A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.展开更多
In this paper, we improve LaSalle's invariance theorem based on Li's work (Li Yong, Asymptotic stability and ultimate boundedness, Northeast. Math. J., 6(1)(1990), 53-59) by relaxing the restrictions, which ma...In this paper, we improve LaSalle's invariance theorem based on Li's work (Li Yong, Asymptotic stability and ultimate boundedness, Northeast. Math. J., 6(1)(1990), 53-59) by relaxing the restrictions, which make the theorem more easy to apply. In addition, we also improve LaSalle's theorem for stochastic differential equation established by Mao (Mao Xuerong, Stochastic versions of the LaSalle theorem, J. Differential Equations, 153(1999), 175-195).展开更多
This paper studies the extension of LaSalle's invariance principle for switched nonlinear systems. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, this paper...This paper studies the extension of LaSalle's invariance principle for switched nonlinear systems. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, this paper allows the switching modes to be only stable. Under certain ergodicity assumptions of the switching signals, two extensions of LaSalle's invariance principle for global asymptotic stability of switched nonlinear systems are obtained using the method of common joint Lyapunov function.展开更多
<正> By developing the mechanical proving method, we determine the structure of LaSalle’sinvariant set for 7-dimensional Lotka-Volterra food chain systems, based on Ritt-Wu’s prin-ciple. We then further show t...<正> By developing the mechanical proving method, we determine the structure of LaSalle’sinvariant set for 7-dimensional Lotka-Volterra food chain systems, based on Ritt-Wu’s prin-ciple. We then further show that the locally asymptotical stable equilibrium point of Lotka-Volterra food chain systems for 7 dimension must be globally stable.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10862001 and 10947011the Construction of Key Laboratories in Universities of Guangxi under Grant No. 200912
文摘A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.
基金The 985 Project of Jilin University and Graduate Innovation Lab of Jilin University.
文摘In this paper, we improve LaSalle's invariance theorem based on Li's work (Li Yong, Asymptotic stability and ultimate boundedness, Northeast. Math. J., 6(1)(1990), 53-59) by relaxing the restrictions, which make the theorem more easy to apply. In addition, we also improve LaSalle's theorem for stochastic differential equation established by Mao (Mao Xuerong, Stochastic versions of the LaSalle theorem, J. Differential Equations, 153(1999), 175-195).
基金Supported partly by the National Natural Science Foundation of China (Grant Nos. 60221301, 60674022 and 60736022)
文摘This paper studies the extension of LaSalle's invariance principle for switched nonlinear systems. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, this paper allows the switching modes to be only stable. Under certain ergodicity assumptions of the switching signals, two extensions of LaSalle's invariance principle for global asymptotic stability of switched nonlinear systems are obtained using the method of common joint Lyapunov function.
基金Project supported by the National Natural Science Foundation of China.
文摘<正> By developing the mechanical proving method, we determine the structure of LaSalle’sinvariant set for 7-dimensional Lotka-Volterra food chain systems, based on Ritt-Wu’s prin-ciple. We then further show that the locally asymptotical stable equilibrium point of Lotka-Volterra food chain systems for 7 dimension must be globally stable.