The objective of the study was to characterize the clays of the Lama depression in Benin. Macroscopic examination of hand soundings, dynamic penetration test and stratigraphic correlation of water borehole logs, as we...The objective of the study was to characterize the clays of the Lama depression in Benin. Macroscopic examination of hand soundings, dynamic penetration test and stratigraphic correlation of water borehole logs, as well as scanning electron microscopy (SEM) combined with energy-dispersive X-ray microanalysis (EDX) method were made on compact or stratified clays. The large grains are embedded in a sintered matrix. The texture is heterogeneous and open, including quartz, carbonates and organic matter. The fine fraction is dominated by mineral paragenesis characterizing Kaolinite-Quartz-Calcite-Gypsum dioctahedral smectites composed of: Oxygen, Silica, Carbon, Aluminum, Iron, Zinc, Titanium and Magnesium. This smectic and regular structure includes coarse grains of the order of 800 μm. The pore diameters vary from 130 μm to 1.14 μm. The inter-particle porosity is poorly developed unlike the inter-aggregate pores larger than 0.05 μm. The texture is laminar and shows elongated turbo static particles with more or less rounded edges and honeycomb particles. Quartz and carbonates induce an increase in heterogeneities which develop mechanical sensitivity and hydraulic conductivity. High contents of silica, iron or aluminum and low contents of calcium and magnesium, as well as the presence of other trace elements suggest an alumino-ferriferous clay resulting from the hydrothermal alteration of the acid granite massif. These heterogeneities promote less tortuous pores or paths, making these clays more permeable. Finally, other stabilization studies and improvements to hydraulic products and binders should favor the use of the studied clay as improved backfill or drilling muds.展开更多
The plasticity index is an essential design parameter used as a standard input in fine-grained soil investigation programs.It is used to estimate the plasticity and physical properties of soils,and indirectly their st...The plasticity index is an essential design parameter used as a standard input in fine-grained soil investigation programs.It is used to estimate the plasticity and physical properties of soils,and indirectly their strength properties.This index is determined from the Atterberg limit tests,starting from the limits of liquidity and plasticity.However,the realization of the test considered as basic and simple,is not so much.The effects of the operator,the calibration of the apparatus and the environmental aspects during the tests affect the reliability and accuracy of the results.In this paper,the objective is to overcome these difficulties by evaluating the plasticity index of clay and loam soils by considering only the values of the liquid limit.Soil samples were collected from 0 to 5 m depth in the localities of the Khôdepression in Benin.On these samples,Atterberg limit tests were performed in the laboratory.Using MATLAB’s Curve Fitting Toolbox,linear,exponential and power prediction models were analyzed.The results showed that there is indeed a good correlation between the plasticity index and the liquid limit of the soils.For the linear model,it was observed R2 equal to 0.9891.For the exponential model,R2 is 0.98871 and for the power model 0.9802.A study of the residual plot validated the models found,as well as comparisons with well-known literature sources.Through the equations obtained,it is now possible to study the plasticity of soils in the Khôdepression only from the liquid limit,without determining the plasticity limit.展开更多
文摘The objective of the study was to characterize the clays of the Lama depression in Benin. Macroscopic examination of hand soundings, dynamic penetration test and stratigraphic correlation of water borehole logs, as well as scanning electron microscopy (SEM) combined with energy-dispersive X-ray microanalysis (EDX) method were made on compact or stratified clays. The large grains are embedded in a sintered matrix. The texture is heterogeneous and open, including quartz, carbonates and organic matter. The fine fraction is dominated by mineral paragenesis characterizing Kaolinite-Quartz-Calcite-Gypsum dioctahedral smectites composed of: Oxygen, Silica, Carbon, Aluminum, Iron, Zinc, Titanium and Magnesium. This smectic and regular structure includes coarse grains of the order of 800 μm. The pore diameters vary from 130 μm to 1.14 μm. The inter-particle porosity is poorly developed unlike the inter-aggregate pores larger than 0.05 μm. The texture is laminar and shows elongated turbo static particles with more or less rounded edges and honeycomb particles. Quartz and carbonates induce an increase in heterogeneities which develop mechanical sensitivity and hydraulic conductivity. High contents of silica, iron or aluminum and low contents of calcium and magnesium, as well as the presence of other trace elements suggest an alumino-ferriferous clay resulting from the hydrothermal alteration of the acid granite massif. These heterogeneities promote less tortuous pores or paths, making these clays more permeable. Finally, other stabilization studies and improvements to hydraulic products and binders should favor the use of the studied clay as improved backfill or drilling muds.
文摘The plasticity index is an essential design parameter used as a standard input in fine-grained soil investigation programs.It is used to estimate the plasticity and physical properties of soils,and indirectly their strength properties.This index is determined from the Atterberg limit tests,starting from the limits of liquidity and plasticity.However,the realization of the test considered as basic and simple,is not so much.The effects of the operator,the calibration of the apparatus and the environmental aspects during the tests affect the reliability and accuracy of the results.In this paper,the objective is to overcome these difficulties by evaluating the plasticity index of clay and loam soils by considering only the values of the liquid limit.Soil samples were collected from 0 to 5 m depth in the localities of the Khôdepression in Benin.On these samples,Atterberg limit tests were performed in the laboratory.Using MATLAB’s Curve Fitting Toolbox,linear,exponential and power prediction models were analyzed.The results showed that there is indeed a good correlation between the plasticity index and the liquid limit of the soils.For the linear model,it was observed R2 equal to 0.9891.For the exponential model,R2 is 0.98871 and for the power model 0.9802.A study of the residual plot validated the models found,as well as comparisons with well-known literature sources.Through the equations obtained,it is now possible to study the plasticity of soils in the Khôdepression only from the liquid limit,without determining the plasticity limit.