An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,dev...An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,development process,and destructive mechanisms of this catastrophic landslide,comprehensive field tests,investigations,and laboratory experiments were conducted.Initially,the heavily weathered rock mass of the slope was intersected by faults and joint fissures,facilitating rainwater infiltration.Moreover,the landslide contained a substantial clay mineral with highly developed micro-cracks and micro-pores,exhibiting strong water-absorption properties.As moisture content increased,the rock mass underwent softening,resulting in reduced strength.Ultimately,continuous heavy rainfall infiltration amplified the slope's weight,diminishing the weak structural plane's strength,leading to fracture propagation,slip plane penetration,and extensive tensile-shear and uplift failure of the slope.The study highlights poor geological conditions as the decisive factor for this landslide,with continuous heavy rainfall as the triggering factor.Presently,adverse environmental factors persistently affect the landslide,and deformation and failure continue to escalate.Hence,it is imperative to urgently implement integrated measures encompassing slope reinforcement,monitoring,and early-warning to real-time monitor the landslide's deformation and deep mechanical evolution trends.展开更多
On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We in...On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.展开更多
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ...The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.展开更多
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin...Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encoun...A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.展开更多
Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify th...Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify the model. To analyze the effect of runoff on slope stability, this study simultaneously simulated the effects of surface runoff and rainfall infiltration on bank slopes in the Three Gorges Reservoir Area. A shallow slope failure method that can be used to analyze runoff was proposed based on the modified Green-Ampt model, the simplified Saint-Venant model, and the infinite slope model. In this model, the modified Green–Ampt model was used to estimate the rainfall infiltration capacity and the wetting front depth. The eight-flow(D8) method and the simplified Saint-Venant model were selected to estimate the distribution of runoff. By considering the wetting front depth as the slip surface depth, the factor of safety of the slope could be determined using the infinite slope stability model. A comparison of the different models reveals that runoff can escalate the instability of certain slopes, causing stable slopes to become unstable. Comparison of the unstable areas obtained from the simulation with the actual landslide sites shows that the model proposed in this study can successfully predict landslides at these sites. The slope instability assessment model proposed in this study offers an alternative approach for estimating high-risk areas in large mountainous regions.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of l...The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model(DEM) on the results are statistically and analytically analyzed. Furthermore, two highrisk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis,the following conclusions were derived:(1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km~2, threatening 414 people and property of about 55.87 million Yuan.(2)The landslides in the study area easily occur in the <400 m elevation range;the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults(0–200 m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads.(3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region.(4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:(1)damage to the leading edge and stress release,(2)continuous creep and cracking,(3)rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods...Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz...The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu...Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52074295)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(Grant No.SKLGDUEK202217).
文摘An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,development process,and destructive mechanisms of this catastrophic landslide,comprehensive field tests,investigations,and laboratory experiments were conducted.Initially,the heavily weathered rock mass of the slope was intersected by faults and joint fissures,facilitating rainwater infiltration.Moreover,the landslide contained a substantial clay mineral with highly developed micro-cracks and micro-pores,exhibiting strong water-absorption properties.As moisture content increased,the rock mass underwent softening,resulting in reduced strength.Ultimately,continuous heavy rainfall infiltration amplified the slope's weight,diminishing the weak structural plane's strength,leading to fracture propagation,slip plane penetration,and extensive tensile-shear and uplift failure of the slope.The study highlights poor geological conditions as the decisive factor for this landslide,with continuous heavy rainfall as the triggering factor.Presently,adverse environmental factors persistently affect the landslide,and deformation and failure continue to escalate.Hence,it is imperative to urgently implement integrated measures encompassing slope reinforcement,monitoring,and early-warning to real-time monitor the landslide's deformation and deep mechanical evolution trends.
基金financially supported by the National Key R&D Program of China (No. 2022YFF0800604)the National Natural Science Foundation of China (No. 42207224)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z021)
文摘On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.
基金the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
文摘The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
基金supported by the State Administration of Science,Technology and Industry for National Defence,PRC(KJSP2020020303)the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ2021-12)。
文摘Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
文摘A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.
基金supported by the National Natural Science Foundation of China (U2240221)the Sichuan Youth Science and Technology Innovation Research Team Project (2020JDTD0006)。
文摘Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify the model. To analyze the effect of runoff on slope stability, this study simultaneously simulated the effects of surface runoff and rainfall infiltration on bank slopes in the Three Gorges Reservoir Area. A shallow slope failure method that can be used to analyze runoff was proposed based on the modified Green-Ampt model, the simplified Saint-Venant model, and the infinite slope model. In this model, the modified Green–Ampt model was used to estimate the rainfall infiltration capacity and the wetting front depth. The eight-flow(D8) method and the simplified Saint-Venant model were selected to estimate the distribution of runoff. By considering the wetting front depth as the slip surface depth, the factor of safety of the slope could be determined using the infinite slope stability model. A comparison of the different models reveals that runoff can escalate the instability of certain slopes, causing stable slopes to become unstable. Comparison of the unstable areas obtained from the simulation with the actual landslide sites shows that the model proposed in this study can successfully predict landslides at these sites. The slope instability assessment model proposed in this study offers an alternative approach for estimating high-risk areas in large mountainous regions.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金financially supported by the National Key Research and Development Program of China(2022YFC3003400)National Natural Science Foundation of China(No. 41402254)Department of Science and Technology of Shaanxi Province(No. 2019ZDLSF07-0701, 2022SF-445)。
文摘The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model(DEM) on the results are statistically and analytically analyzed. Furthermore, two highrisk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis,the following conclusions were derived:(1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km~2, threatening 414 people and property of about 55.87 million Yuan.(2)The landslides in the study area easily occur in the <400 m elevation range;the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults(0–200 m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads.(3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region.(4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:(1)damage to the leading edge and stress release,(2)continuous creep and cracking,(3)rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
基金The authors gratefully acknowledge the financial support pro-vided by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41907232)the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the State Key Program of National Natural Science Foundation of China(Grant No.41230636).
文摘Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
文摘The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金funded by the National Natural Science Foundation of China(Grant No.41861134008)Muhammad Asif Khan academician workstation of Yunnan Province(Grant No.202105AF150076)+6 种基金General program of Yunnan Province Science and Technology Department(Grant No.202105AF150076)Key Project of Natural Science Foundation of Yunnan Province(Grant No.202101AS070019)Key R&D Program of Yunnan Province(Grant No.202003AC100002)General Program of basic research plan of Yunnan Province(Grant No.202001AT070059)Major scientific and technological projects of Yunnan Province:Research on Key Technologies of ecological environment monitoring and intelligent management of natural resources in Yunnan(No:202202AD080010)“Study on High-Level Hidden Landslide Identification Based on Multi-Source Data”of Key Laboratory of Early Rapid Identification,Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province(KLGDTC-2021-02)Guizhou Scientific and Technology Fund(QKHJ-ZK[2023]YB 193).
文摘Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.