In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical...In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical performance is mainly described by measuring both cell short circuit current and open circuit voltage. The measurements of this cell by using multimeters suffer from some problems because the cell has high current intensity with low output voltage. So, the solar cell short circuit current values are obtained by measuring the voltage developed across a known resistance Current Shunt. Samples of the obtained current values are accurately calibrated by using a Micropotentiometer (μpot) thermal element (TE) to validate this new measuring technique. Moreover, the solar cell open circuit voltage has been measured. Besides, the cell output power has been calculated and can be correlated with the measured incident radiation.展开更多
The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shun...The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed.展开更多
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract...In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.展开更多
Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented la...Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented large-scale modules.One of the main reasons for the efficiency losses is the degraded quality and morphology of the deposited large-area films,which is closely associated with crystallization processes.In this review,we discuss the nucleation and crystallization processes in solution and vaporbased up-scaling deposition methods for large-area perovskite films.We review recent scientific achievements and technical developments that have been made in the field of large-area cells.We present the existing problems that limit the performance of large devices and extensively discuss the key influencing parameters from the perspective of nucleation and crystallization over large areas.This review highlights the importance of crystallization control in up-scaling fabrications and presents promising strategies towards large-area perovskite-based optoelectronic devices.展开更多
The V-Shaped Module (VSM) solar cell technology, which breaks the traditional concept of solar cell system, has been proven to enhance power conversion efficiency of some solar cells and has offered opportunities to i...The V-Shaped Module (VSM) solar cell technology, which breaks the traditional concept of solar cell system, has been proven to enhance power conversion efficiency of some solar cells and has offered opportunities to increase generation power densities in area-limited applications. Compared to a planar cell system, the VSM has an additional opportunity to absorb photons and taps the potential of solar cells. In this study, the VSM, the proposed common technique enhancing efficiencies of various solar cells, was investigated by using commercially available multi-crystalline silicon solar cells. The VSM technique enables the efficiencies of the multi-crystalline silicon cells to increase from 13.4% to 20.2%, giving an efficiency boost of 51%. Though the efficiency of the cells increases, the open-circuit voltage of the cells decreases owing to the VSM technique. Furthermore, the obvious reduction in open-circuit voltage in the VSM was found and the phenomenon is explained for the first time.展开更多
The recent dramatic rise in power conversion efficiencies(PCE)of perovskite solar cells has triggered intense research worldwide.However,their practical development is hampered by poor stability and low PCE values w...The recent dramatic rise in power conversion efficiencies(PCE)of perovskite solar cells has triggered intense research worldwide.However,their practical development is hampered by poor stability and low PCE values with large areas devices.Here,we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film,even for 5 × 5 cm^2 modules,the PCE reached 10.6%and no significant degradation was found after 140 days of outdoor testing.Our approach enables the realization of high performance large-area PSCs for practical application.展开更多
Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovo...Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode ofOSCs. A typical conjugated polymer, poly[(2-5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2) solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.展开更多
An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently...An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.展开更多
To reduce the quadratic scaling of the series resistance(R)and sheet resistance(Rs)of the devices,physi-cal isolation of the large area devices into small pieces has been proven to be a reliable and cost-efficient pat...To reduce the quadratic scaling of the series resistance(R)and sheet resistance(Rs)of the devices,physi-cal isolation of the large area devices into small pieces has been proven to be a reliable and cost-efficient patterning technique.In this paper,we got an interesting result that the physical isolation did not show obvious effct on the photovoltaic performance of perovskite solar cells(PSCs)when fixing the active area.Three different isolation types,unetched ITO,etched ITO,and laser etching whole devices,have been induced to investigate the physical isolation roles.The results show that the electrons and holes could be collected efficiently in active area for all the isolation types.The proposed mechanism illustrates that the nonradiative recombination and recombination of electrons and hole in inactive area do not influence the performance of devices.This work may open a new way for the commer-cialization of PSCs by reducing the complex process and the etching costs.展开更多
文摘In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical performance is mainly described by measuring both cell short circuit current and open circuit voltage. The measurements of this cell by using multimeters suffer from some problems because the cell has high current intensity with low output voltage. So, the solar cell short circuit current values are obtained by measuring the voltage developed across a known resistance Current Shunt. Samples of the obtained current values are accurately calibrated by using a Micropotentiometer (μpot) thermal element (TE) to validate this new measuring technique. Moreover, the solar cell open circuit voltage has been measured. Besides, the cell output power has been calculated and can be correlated with the measured incident radiation.
文摘The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed.
基金supported by the National Research Foundation of Korea(NRF)under the Ministry of ScienceICT&Future Planning(Basic Science Research Program[No.2021R1A5A6002853],[No.2022R1A2C3004964],[No.2022R1C1C2008126],[No.2022M3H4A1A03074093])
文摘In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.
文摘Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented large-scale modules.One of the main reasons for the efficiency losses is the degraded quality and morphology of the deposited large-area films,which is closely associated with crystallization processes.In this review,we discuss the nucleation and crystallization processes in solution and vaporbased up-scaling deposition methods for large-area perovskite films.We review recent scientific achievements and technical developments that have been made in the field of large-area cells.We present the existing problems that limit the performance of large devices and extensively discuss the key influencing parameters from the perspective of nucleation and crystallization over large areas.This review highlights the importance of crystallization control in up-scaling fabrications and presents promising strategies towards large-area perovskite-based optoelectronic devices.
文摘The V-Shaped Module (VSM) solar cell technology, which breaks the traditional concept of solar cell system, has been proven to enhance power conversion efficiency of some solar cells and has offered opportunities to increase generation power densities in area-limited applications. Compared to a planar cell system, the VSM has an additional opportunity to absorb photons and taps the potential of solar cells. In this study, the VSM, the proposed common technique enhancing efficiencies of various solar cells, was investigated by using commercially available multi-crystalline silicon solar cells. The VSM technique enables the efficiencies of the multi-crystalline silicon cells to increase from 13.4% to 20.2%, giving an efficiency boost of 51%. Though the efficiency of the cells increases, the open-circuit voltage of the cells decreases owing to the VSM technique. Furthermore, the obvious reduction in open-circuit voltage in the VSM was found and the phenomenon is explained for the first time.
文摘The recent dramatic rise in power conversion efficiencies(PCE)of perovskite solar cells has triggered intense research worldwide.However,their practical development is hampered by poor stability and low PCE values with large areas devices.Here,we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film,even for 5 × 5 cm^2 modules,the PCE reached 10.6%and no significant degradation was found after 140 days of outdoor testing.Our approach enables the realization of high performance large-area PSCs for practical application.
基金financially supported by the National Natural Science Foundation of China(Nos.21125420 and 21474022)the Chinese Academy of Sciences
文摘Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode ofOSCs. A typical conjugated polymer, poly[(2-5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2) solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.
基金supported by the Ministry of Science and Technology(2014CB643501)the National Natural Science Foundation of China(91633301,21520102006,51521002,51603070)
文摘An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.
基金Supported by the National Natural Science Foundation of China(Nos.51772039,21703027,21902021,51972293)the Fun-damental Research Funds for the Central Universities,China[No.DUT16RC(4)77]the Grant-in-Aid for Scientific Research(KAK ENHI)Program,Japan(B,Grant No.19H02818).
文摘To reduce the quadratic scaling of the series resistance(R)and sheet resistance(Rs)of the devices,physi-cal isolation of the large area devices into small pieces has been proven to be a reliable and cost-efficient patterning technique.In this paper,we got an interesting result that the physical isolation did not show obvious effct on the photovoltaic performance of perovskite solar cells(PSCs)when fixing the active area.Three different isolation types,unetched ITO,etched ITO,and laser etching whole devices,have been induced to investigate the physical isolation roles.The results show that the electrons and holes could be collected efficiently in active area for all the isolation types.The proposed mechanism illustrates that the nonradiative recombination and recombination of electrons and hole in inactive area do not influence the performance of devices.This work may open a new way for the commer-cialization of PSCs by reducing the complex process and the etching costs.