In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital hi...In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.展开更多
Thomson scattering (TS), as a popular and reliable diagnostic technique, has successfully measured electron temperatures and electron number densities of plasmas for many years. However, conventional TS techniques usi...Thomson scattering (TS), as a popular and reliable diagnostic technique, has successfully measured electron temperatures and electron number densities of plasmas for many years. However, conventional TS techniques using Nd:YAG lasers operate only at tens of hertz. Here, we present the development of a high-repetition-rate TS instrument based on a high-speed, pulse-burst laser system to greatly increase the temporal resolution of measurements. Successful instrument prototype testing was carried out by collecting TS light from laboratory helium and argon plasmas at 10 kHz. Calibration of the instrument detection sensitivity using nitrogen/ oxygen rotational Raman scattering signal is also presented. Quantitative electron number densities and electron temperatures of the plasma were acquired at 10 kHz, for stable plasma discharges as, respectively,~0.9 eV and ~5.37×10^21 m^-3 for the argon plasma, and ~1 eV and ~6.5×10^21 m^-3 for the helium plasma.展开更多
文摘In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.
基金supported by the US Department of Energy’s STTR program under Grant No.DE-SC0018672(Program Manager:Dr Matthew Lanctot)
文摘Thomson scattering (TS), as a popular and reliable diagnostic technique, has successfully measured electron temperatures and electron number densities of plasmas for many years. However, conventional TS techniques using Nd:YAG lasers operate only at tens of hertz. Here, we present the development of a high-repetition-rate TS instrument based on a high-speed, pulse-burst laser system to greatly increase the temporal resolution of measurements. Successful instrument prototype testing was carried out by collecting TS light from laboratory helium and argon plasmas at 10 kHz. Calibration of the instrument detection sensitivity using nitrogen/ oxygen rotational Raman scattering signal is also presented. Quantitative electron number densities and electron temperatures of the plasma were acquired at 10 kHz, for stable plasma discharges as, respectively,~0.9 eV and ~5.37×10^21 m^-3 for the argon plasma, and ~1 eV and ~6.5×10^21 m^-3 for the helium plasma.