Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great atten...Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great attention in the field of hydrogeology during recent years. As there is no surface outflow from Namco, the large water imbalance can only be explained by water seepage. Synthetic aperture radar (SAR) image data were used for the first time in combination with hydrological data actually measured in the field and meteorological station data, to quantitatively acquire the information of surface fluctuation, water storage variation, and to estimate groundwater leakage from Namco Lake. The results provide theoretical support and data for further understanding the processes and extent of water resource response to global climate change, and also provide a scientific basis for rational development and utilization of water resource in the Tibetan Plateau.展开更多
基金financially supported by the National Natural Science Foundation of China(grant No.61301025)the Jiangsu Provincial Natural Science Foundation of China(grant No.BK20130853)the Fundamental Research Funds for the Central Universities(grant No.2016B07114)
文摘Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great attention in the field of hydrogeology during recent years. As there is no surface outflow from Namco, the large water imbalance can only be explained by water seepage. Synthetic aperture radar (SAR) image data were used for the first time in combination with hydrological data actually measured in the field and meteorological station data, to quantitatively acquire the information of surface fluctuation, water storage variation, and to estimate groundwater leakage from Namco Lake. The results provide theoretical support and data for further understanding the processes and extent of water resource response to global climate change, and also provide a scientific basis for rational development and utilization of water resource in the Tibetan Plateau.